- 博客(4)
- 收藏
- 关注
原创 Lagrange multipliers and KKT conditions
概念最优化问题的类型: (1)无约束的优化问题 (2) (3)最优化问题的解法 针对每种优化类型有不同的解法: (1)无约束的优化问题 (2) 拉格朗日乘子法 (3) KKT条件理解如何理解拉格朗日乘子法和KKT条件的求解原理和过程
2015-11-05 16:25:26
452
原创 Logistic Regression
Logistics regression估计的对象估计的想法估计的理论估计的求解估计的对象机器学习分为监督学习和非监督学习,监督学习下又分为regression和classification,logistic回归属于classification,判别样本属于哪一类的概率为多少。估计的想法在做回归时,总是对模型进行一定的假定,比如线性回归模型,假定模型是线性的,这些假定往往在实际中难以满足判
2015-11-03 16:54:31
316
原创 Later equals never
承认自己的无知,也知道知识是没有尽头的,并不像一张试卷有考试范围有满分答案,只希望自己能坚持耕耘,即使现在什么都不会,也并不算晚,不需要和谁来比较,只要今天比昨天更有收获就好。还是用最喜欢的费曼的一句话结尾并开始,“如果你喜欢一件事,又有这样的才干,那就把整个人都投入进去,就要像一把刀直扎下去直到刀柄一样,不要问为什么,也不要管会碰到什么”。坚持下去。
2015-11-03 11:20:04
1601
原创 极大似然估计
极大似然估计极大似然估计是一种估计方法,针对该估计方法我们需要考虑的问题有:估计的对象估计的想法估计的理论估计的性质 求解的方法估计的对象参数估计分为点估计和区间估计,极大似然估计是点估计的一种方法,在已知样本的前提下,用来估计满足这些样本分布的参数,并把可能性最大的那个参数作为真实的参数。估计的想法统计的思想就是从样本去推断总体,参数估计就是用样本分布去估计总体的分布,因为样本分布是来
2015-11-03 11:16:14
555
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人