RSA算法计算公钥和私钥

选择素数: p=47 和 q=71,并选取e=79,求出RSA算法的公钥和私钥。
答:n = 47×71 = 3337 ; φ(n) = 46×70 = 3220 ;
下面利用扩展的欧几里得算法
私钥d满足:79d – 3220k = 1 ①
将3220对79取模得到的余数60代替3220,变为79d - 60k = 1 ②
将79对60取模得到的余数19代替79,变为19d – 60k = 1 ③
将60对19取模得到的余数3代替60,变为19d - 3k = 1 ④
将19对3取模得到的余数1代替19,变为d - 3k = 1 ⑤
令k=0,代入⑤式中,得d=1 ;
将d=1代入④式,得k=6 ;
将k=6代入③式,得d=19 ;
将d=19代入②式,得k=25 ;
将k=25代入①式,得d=1019 ;
所以,公钥为(3337,79),私钥为(3337,1019)。

(2)假设消息为 m = 3268826879666683,利用上述公钥和私钥,分别实现对m的加密和解密。
答:【加密过程】
根据m<n的要求,将m分成326 , 882 , 687 , 966 , 668 , 003六组。
C1 = 326^79(mod 3337) = 2192 ;
C2 = 882^79(mod 3337) = 2533 ;
C3 = 687^79(mod 3337) = 2091 ;
C4 = 966^79(mod 3337) = 2276 ;
C5 = 668^79(mod 3337) = 2423 ;
C6 = 3^79(mod 3337) = 158 ;
所以最终的密文C = 21922533209122762423158

【解密过程】
M1 = 326^1019(mod 3337) = 163 ;
M2 = 882^1019(mod 3337) = 1097 ;
M3 = 687^1019(mod 3337) = 1592 ;
M4 = 966^1019(mod 3337) = 151 ;
M5 = 668^1019(mod 3337) = 2677 ;
M6 = 3^1019(mod 3337) = 2140 ;
所以最终的明文M = 1631097159215126772140

### 回答1RSA算法是一种非对称加密算法,它由公钥私钥组成。公钥可以用于加密数据,而私钥用于解密加密的数据。 首先,我们需要生成一组RSA公钥私钥。下面是一个使用Python编写的生成公钥私钥代码示例: ```python from Crypto.PublicKey import RSA # 生成密钥对 key = RSA.generate(2048) # 获取公钥 public_key = key.publickey().export_key() print("公钥:", public_key.decode()) # 获取私钥 private_key = key.export_key() print("私钥:", private_key.decode()) ``` 以上代码使用了Python的`Crypto`库,首先通过`RSA.generate(2048)`生成一个2048位的RSA密钥对,然后通过`key.publickey().export_key()`获得公钥,通过`key.export_key()`获得私钥。 执行以上代码,会打印出生成的公钥私钥。由于密钥长度为2048位,生成的公钥私钥都会比较长。 以上就是求出一组RSA算法公钥私钥代码示例。通过这组密钥,我们可以使用RSA算法对数据进行加解密操作。 ### 回答2RSA算法是一种非对称加密算法,其公钥私钥是一对密钥,用于加密解密数据。 首先,我们需要生成一对RSA密钥对,其中包括公钥私钥。具体代码如下: ```python from Crypto.PublicKey import RSA # 生成RSA密钥对 key = RSA.generate(2048) # 获取公钥私钥 public_key = key.publickey().export_key() private_key = key.export_key() # 将公钥私钥保存到文件 with open('public_key.pem', 'wb') as f: f.write(public_key) with open('private_key.pem', 'wb') as f: f.write(private_key) ``` 上述代码使用了`Crypto`库来生成RSA密钥对,并将公钥私钥保存到了`public_key.pem``private_key.pem`文件中。 生成密钥对后,可以使用公钥对数据进行加密,私钥对数据进行解密。具体代码如下: ```python from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP # 加载公钥私钥 with open('public_key.pem', 'rb') as f: public_key = RSA.import_key(f.read()) with open('private_key.pem', 'rb') as f: private_key = RSA.import_key(f.read()) # 使用公钥进行加密 data = b'Hello World!' cipher_rsa = PKCS1_OAEP.new(public_key) encrypted_data = cipher_rsa.encrypt(data) # 使用私钥进行解密 cipher_rsa = PKCS1_OAEP.new(private_key) decrypted_data = cipher_rsa.decrypt(encrypted_data) print('原始数据:', data) print('加密后数据:', encrypted_data) print('解密后数据:', decrypted_data) ``` 上述代码中,使用`Crypto`库中的`RSA`模块加载公钥私钥文件,并使用`PKCS1_OAEP`模块对数据进行加密解密。加密后的数据为`encrypted_data`,解密后的数据为`decrypted_data`。 ### 回答3: RSA算法是一种非对称加密算法,由三个部分组成:公钥私钥加解密算法。下面是一个简单的Python代码示例来生成RSA公钥私钥: ```python from Crypto.PublicKey import RSA # 生成RSA密钥对,key_size为密钥长度,一般1024位或2048位 key = RSA.generate(2048) # 获取公钥私钥 public_key = key.public_key().export_key() private_key = key.export_key() print("公钥:") print(public_key.decode()) print("\n私钥:") print(private_key.decode()) ``` 以上代码使用了Python的`Crypto`库,需要先安装该库才能运行。 运行代码后,会输出生成的RSA公钥私钥RSA公钥可以用于加密数据,私钥则用于解密数据。 需要注意的是,RSA算法的档案中有许多参数,例如模数(n)公钥指数(e)私钥指数(d),指数的择对于算法的安全性至关重要。以上代码示例生成的RSA密钥对是具有较高安全性的默认参数。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值