完全理解乘法快速幂及其两种写法的解析

an=?0n10105 a n = ? 0 ≤ n ≤ 10 10 5

没错,乘法快速幂就是解决上述问题的。

乘法快速幂的思想

可以看到,要求一个数的 a a n次幂,而且这个 n n 非常大,如果利用循环来处理,O(n)的时间复杂度对于计算机的处理速度来说是远远不够的;

循环既然不能满足要求,那我们能不能加速一下这个循环呢,比如 O(n)O(logn) O ( n ) → O ( l o g n ) 的优化呢?

循环的做法是把这个式子展开:

an=a×a×an a n = a × a × ⋯ a ⏟ n

然后从左到右依次相乘,最后得到结果。但是仔细一看可以知道:

an=a×a×an2×a×a×an2×(a|1)=an2×an2×(a|1) a n = a × a × ⋯ a ⏟ n 2 × a × a × ⋯ a ⏟ n 2 × ( a | 1 ) = a n 2 × a n 2 × ( a | 1 )

按照循环的做法,当求出了 an2 a n 2 的时候,后面的 an2 a n 2 你也就知道了,不需要再计算了,但是循环的做法还是会计算,这也就导致了效率低下,没有用到之前的计算结果。

你是不是很快就会想到:在循环的做法中,当算出 a1 a 1 的时候马上就可以知道 a2 a 2 ,那么很快就可以知道 a4 a 4 ,……,没错,确实是这样,但是问题来了,这样的递增如何才能保证你刚好就算到了 an a n 。有可能你跨过了 an a n ,这些都是存在的;

出现上面这种情况是因为你用到了倍增的想法(这个想法可以用在快速幂的非递归实现中),从小到大,而如果把这个问题倒过来看:要求 an a n ,是不是要先求 an2 a n 2 ;要求 an2 a n 2 ,是不是要求 an4 a n 4 ,……,那么这里 n n 有可能是奇数,没关系啊,是奇数我们就把答案再多乘一个a,即 a2k+1=ak×ak×a a 2 k + 1 = a k × a k × a 。这样最终我们要解决的问题就是 a0 a 0 a0=1 a 0 = 1 啊,这么一说,乘法快速幂的递归写法是不是就呼之欲出了。

快速幂的高效

不过这里先说一下乘法快速幂的时间复杂度,由于递归版的乘法快速幂是基于二分递归的,因此时间复杂度为 O(logn) O ( l o g n ) ,那么在文首的那个背景下, n=10105103210 n = 10 10 5 , 10 3 ≈ 2 10 ,即 logn106 l o g n ≈ 10 6 ,程序在1s能还是可以跑完的,不过用递归可能会爆栈。

快速幂的应用

通常,不会让你直接求 an a n ,因为数字太大了,计算机的int乃至long long都存不下,如果真让你求了,没办法,要么用JAVA的BigInteger这个类,要么就自己写一个C++的大数模板。

一般都会对 an a n 进行取模,即 an(modm)=? a n ( m o d m ) = ? ,然后这个 m m 一般都是10e9+7,这是为了把结果限制在int的取值范围中,但是变量都申明为long long类型的,这样是防止在做乘法的过程中结果超过int的范围而导致数据丢失。由于乘法不受取模先后的影响,因此可以在递归的过程中就取模。

乘法快速幂的这种思想也应用在矩阵快速幂中,这个在博客深入浅出矩阵快速幂及其简单应用中有详细说明。

乘法快速幂的两种写法

乘法快速幂在互联网招聘的笔试中就有考察,例如迅雷2018秋招的第一道编程题,快手2018春招的第一道编程题就是裸的乘法快速幂。

递归

递归的写法刚在前面已经提到过了,递归的终点就是n == 0,这个时候返回1

// 递归
long long mul(long long a, long long n, long long mod)
{
    // a ^ 0 = 1
    if (n == 0)
        return 1LL;
    // caculate a ^ (n / 2)
    long long ret = mul(a, n / 2, mod);
    ret = ret * ret % mod;
    // select a or 1 by n % 2
    return ret * (n & 1 ? a : 1) % mod;
}

非递归

现在回到文首一开始提到的循环做法,非递归版中确实需要计算 a0,a1,a2, a 0 , a 1 , a 2 , ⋯ 但是,如何把计算出来的这些东西凑成 an a n 呢?

我们把 n n 写成二进制试试,举个具体例子吧,n=13=(1101)2

an=a13=a1101=a23×a22×a20=a8×a4×a1 a n = a 13 = a 1101 = a 2 3 × a 2 2 × a 2 0 = a 8 × a 4 × a 1

没错,就是这么凑的,可以看到,通过二进制来分解 n n 从而计算an的时间复杂度也是 O(logn) O ( l o g n )

写法也呼之欲出了。就是:让 a a a0,a1,a2,往上增加,然后通过n的二进制中的某一位k来确定要不要把 ak a k 乘入结果。

这个思想和剑指Offer66题之每日6题 - 第八天中的第五题:求1+2+3+…+n 中的

最后这种方法我觉得也很好, a×b=(1010111)2×b=b2n+b2n2+ a × b = ( 1010111 ⋯ ) 2 × b = b ∗ 2 n + b ∗ 2 n − 2 + ⋯

就是把 a a 化成二进制,然后利用乘法的分配率进行计算,由于b都是乘以2的幂次,故可以通过左移来代替乘法运算;之后再通过递归来累加这些乘积。

这个想法很类似,大家可以参照着看一下。

// 非递归
long long mul(long long a, long long n, long long mod)
{
    long long ret = 1LL;
    while (n > 0) {
        // select a ^ k to ret by some bit of n
        ret = ret * (n & 1 ? a : 1) % mod;
        // change a ^ k to 2 ^ (2k)
        a = a * a % mod;
        n >>= 1;
    }
    return ret;
}

JAVA的BigInteger类

万一要是不记得写了,那么还有JAVA呢,BigIntegerpow函数的实现就是用了非递归版的乘法快速幂:

public BigInteger pow(int exponent) {
    if (exponent < 0)
        throw new ArithmeticException("Negative exponent");
    if (signum == 0)
        return (exponent == 0 ? ONE : this);

    // Perform exponentiation using repeated squaring trick
    int newSign = (signum < 0 && (exponent & 1) == 1 ? -1 : 1);
    int[] baseToPow2 = this.mag;
    int[] result = {1};

    while (exponent != 0) {
        if ((exponent & 1) == 1) {
            result = multiplyToLen(result, result.length,
                                   baseToPow2, baseToPow2.length, null);
            result = trustedStripLeadingZeroInts(result);
        }
        if ((exponent >>>= 1) != 0) {
            baseToPow2 = squareToLen(baseToPow2, baseToPow2.length, null);
            baseToPow2 = trustedStripLeadingZeroInts(baseToPow2);
        }
    }
    return new BigInteger(result, newSign);
}

里面七七八八的函数我也看不懂,不过思想就是乘法快速幂,用的是非递归版的实现,要是不会了,直接调用这个函数就是了。

BigInteger mul(BigInteger a, int n)
{
    return a.pow(n);
}

如果还要取模,那么直接mul(a, n).mod(m)就可以了。

不过这个BigIntegerpow有个缺点,它只接受int型的参数,也就是说如果 n n 一旦达到了long long的范围,那么这个函数是不能用的,因此还是要掌握乘法快速幂的原理与写法,这样才能更好地解决问题。

总结

要么二分,要么二进制,总会从O(n)O(logn)的。

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值