FPN_Tensorflow
A Tensorflow implementation of FPN detection framework.
R2CNN Rotational Region CNN
A Tensorflow implementation of FPN or R2CNN detection framework based on FPN . The paper references R2CNN Rotational Region CNN for Orientation Robust Scene Text Detection or Feature Pyramid Networks for Object Detection
(WGAN、WGAN_gp)Wasseratein GAN
基于tensorflow实现的wgan和wgan_gp,将数据集放于data文件夹下即可,如data/数据/*.jpg
(DCGAN)Deep convolutional Generative Adversarial Nets
基于tensorflow实现的DCGAN,自动生成动漫头像(内有头像数据爬取和裁剪函数),也可以生成任意数据集(将数据文件夹放于data文件夹下即可,如data/faces/*.jpg)
基于tensorflow中tflearn库实现部分RCNN功能
# 工程内容
这个程序是基于tensorflow的tflearn库实现部分RCNN功能。
# 开发环境
windows10 + python3.5 + tensorflow1.2 + tflearn + cv2 + scikit-learn
# 数据集
采用17flowers据集, 官网下载:http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
# 程序说明
1、setup.py---初始化路径
2、config.py---配置
3、tools.py---进度条和显示带框图像工具
4、train_alexnet.py---大数据集预训练Alexnet网络
5、preprocessing_RCNN.py---图像的处理(选择性搜索、数据存取等)
6、selectivesearch.py---选择性搜索源码
7、fine_tune_RCNN.py---小数据集微调Alexnet
8、RCNN_output.py---训练SVM并测试RCNN(测试的时候测试图片选择第7、16类中没有参与训练的,单朵的花效果好,因为训练用的都是单朵的)
# 文件说明
1、train_list.txt---预训练数据,数据在17flowers文件夹中
2、fine_tune_list.txt---微调数据2flowers文件夹中
3、1.png---直接用选择性搜索的区域划分
4、2.png---通过RCNN后的区域划分
# 程序问题
1、由于数据集小的原因,在微调时候并没有像论文一样按一个bitch32个正样本,128个负样本输入,感觉正样本过少;
2、还没有懂最后是怎么给区域打分的,所有非极大值抑制集合canny算子没有进行,待续;
3、对选择的区域是直接进行缩放的;
4、由于数据集合论文采用不一样,但是微调和训练SVM时采用的IOU阈值一样,有待调参。
基于tensorflow的tflearn库实现部分RCNN功能
# 工程内容
这个程序是基于tensorflow的tflearn库实现部分RCNN功能。
# 开发环境
windows10 + python3.5 + tensorflow1.2 + tflearn + cv2 + scikit-learn
# 数据集
采用17flowers据集, 官网下载:http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
# 程序说明
1、setup.py---初始化路径
2、config.py---配置
3、tools.py---进度条和显示带框图像工具
4、train_alexnet.py---大数据集预训练Alexnet网络,140个epoch左右,bitch_size为64
5、preprocessing_RCNN.py---图像的处理(选择性搜索、数据存取等)
6、selectivesearch.py---选择性搜索源码
7、fine_tune_RCNN.py---小数据集微调Alexnet
8、RCNN_output.py---训练SVM并测试RCNN(测试的时候测试图片选择第7、16类中没有参与训练的,单朵的花效果好,因为训练用的都是单朵的)
# 文件说明
1、train_list.txt---预训练数据,数据在17flowers文件夹中
2、fine_tune_list.txt---微调数据2flowers文件夹中
3、1.png---直接用选择性搜索的区域划分
4、2.png---通过RCNN后的区域划分
# 程序问题
1、由于数据集小的原因,在微调时候并没有像论文一样按一个bitch32个正样本,128个负样本输入,感觉正样本过少;
2、还没有懂最后是怎么给区域打分的,所有非极大值抑制集合canny算子没有进行,待续;
3、对选择的区域是直接进行缩放的;
4、由于数据集合论文采用不一样,但是微调和训练SVM时采用的IOU阈值一样,有待调参。
Graph_Based_Image_Segmentation(C++)
Efficient Graph-Based Image Segmentation(中文参考:http://blog.csdn.net/mao_kun/article/details/50576036)的实现源码(C++,看不懂),自己尝试用python实现,未遂。
环境:windows10 + Visual Studio 2013 + python3.5
程序:
segment.cpp---主函数,可以改图片的输入路径
jpg2ppm.py---由于上面的程序图片输入格式是ppm,所以写了一个转成ppm格式的python函数(不一定要jpg输入)
ppm2jpg.py---输出图片也是ppm格式,这个python函数可以转成jpg格式进行显示。
CNN_UCMerced-LandUse_Caffe_finetune
# CNN_UCMerced-LandUse_Caffe(数据:http://vision.ucmerced.edu/datasets/landuse.html)
主要任务:基于深度学习框架完成对光学遥感图像UCMerced LandUse数据集的分类。
数据特点:共包含21类土地类型图片,每类100张,每张像素大小为256*256,数据类内距离大,类间小。
完成情况:数据量太小,训练数据出现过拟合;为了克服这个问题,又减小训练时间,采用caffe框架,在别人训练好的bvlc_reference_caffenwt模型上进行fine-tune,对最后一层设置较大的学习速率,结果取得了93%的正确率;在这基础上又在fc7层上提取了每张图片的4096维特征,进行了SVM分类,取得了95%以上的分类正确率,并对结果做了可视化分析。
环境:ubuntu14.04 + caffe + python(数据划分和增强在用windows10的3.5,其余都是unbuntu下用的2.7)
程序(相关路径需要修改)/步骤:
multi_divide_pic.py---多进程进行数据划分(cv2没装成功,建议用cv2,方便)
multi_augmentation_pic.py---多进程数据增强
make_caffe_lmdb.py---生成caffe训练需要的数据路径文件,然后修改caffe配置文件
bvlc_reference_caffenet.caffemodel---caffe模型,在上面进行finetune(http://dl.caffe.berkeleyvision.org/?from=message&isappinstalled=1)
binaryproto2npy.py---将caffe生成的均值文件转换成.npy格式
cnn_vision_caffe.py---对训练好的模型进行可视化分析
extract_features.py---获取每张图片在fc7层输出的4096维特征
svm_predict.py---使用svm对上述提取的特征进行训练预测
svm_vision.py---对svm模型进行可视化分析
tsne.py---对数据进行降维可视化
基于selective_search对手写数字串进行分割,并基于tensorflow在mnist训练好的模型进行识别
基于selective_search源码对手写数字串进行过滤分割,并基于tensorflow在mnist训练好的模型进行识别。
环境:Windows10 + tensorflow1.2 + python3.5 + cv2
程序:
example/demo.py---对手写数字图片的分割,并将每个数字做成28*28的黑底白字图片,保存在本地image_data.npy
example/mnist_model.py---对手写体mnist数据集进行训练,训练好后读取数据进行识别
example/camera.py---是调用计算机摄像头获取图片用的,按q退出拍照
selectivesearch/selectivesearch.py---是选择性搜索的源代码
注意:手写数字的图片尽量不要太大(太大会显得数字写的太细,调大数字粗细度),每个数字大小不要差太多,可以在画板上写的一个数字长宽在50像素左右效果不错,其他的没有测试过。
商超小票打印系统
该项目主要为小型超市提供服务,数据以流的方式写到硬盘,完成对超市内商品和员工的管理。主要功能用户登录、注册、前台收银、商品管理。
采用C/S架构,利用面向对象的编程思想采用纯JAVA程序进行开发,数据的读写都是通过流的方式写到硬盘。
KNN多类分类
KNN的java简单实现多类分类,数据集来自Iris
matlab 分水岭算法
matlab 多个分水岭算法实现图像分割,注释详细
LCD 数码管 小键盘 仿真 C51
内容包括LCD显示 数码管显示 小键盘扫面 proteus仿真 C51代码
信号发生器 数码管 AD DA
信号发生器 包括使用数码管 AD DA,产生调频调幅的仿真与代码
学生信息管理系统 delphi+SQL server2000
学生信息管理系统 delphi+SQL server2000
数学模型 姜启源第四版电子书
本书第一、二、三版分别出版于 1987年、1993年和2003年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第四版在保持前三版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。
lingo11安装包
中文名称为“交互式的线性和通用优化求解器”,是由美国LINDO系统公司(Lindo System Inc.)开发的一套专门用于求解最优化问题的软件包,用于求解线性规划和二次规划问题,LINGO可以求解非线性规划问题,也可以用于一些线性和非线性方程(组)的求解等。此外,LINGO还允许优化模型中的决策变量为整数(即整数规划),其执行速度很快 ,是求解优化模型的最佳选择。