算法简介
插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向 前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要 反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
算法描述和实现
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
- <1>.从第一个元素开始,该元素可以认为已经被排序;
- <2>.取出下一个元素,在已经排序的元素序列中从后向前扫描;
- <3>.如果该元素(已排序)大于新元素,将该元素移到下一位置;
- <4>.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- <5>.将新元素插入到该位置后;
- <6>.重复步骤2~5。
Javascript代码实现:
function insertionSort(array) {
if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
console.time('插入排序耗时:');
for (var i = 1; i < array.length; i++) {
var key = array[i];
var j = i - 1;
while (j >= 0 && array[j] > key) {
array[j + 1] = array[j];
j--;
}
array[j + 1] = key;
}
console.timeEnd('插入排序耗时:');
return array;
} else {
return 'array is not an Array!';
}
}
改进插入排序:(查找插入位置时使用二分查找的方式)
function binaryInsertionSort(array) {
if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
console.time('二分插入排序耗时:');
for (var i = 1; i < array.length; i++) {
var key = array[i], left = 0, right = i - 1;
while (left <= right) {
var middle = parseInt((left + right) / 2);
if (key < array[middle]) {
right = middle - 1;
} else {
left = middle + 1;
}
}
for (var j = i - 1; j >= left; j--) {
array[j + 1] = array[j];
}
array[left] = key;
}
console.timeEnd('二分插入排序耗时:');
return array;
} else {
return 'array is not an Array!';
}
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(binaryInsertionSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
JAVA
public static void insertionSort(int[] arr){
for (int i=1; i<arr.length; ++i){
int value = arr[i];
int position=i;
while (position>0 && arr[position-1]>value){
arr[position] = arr[position-1];
position--;
}
arr[position] = value;
}//loop i
}
算法性能/复杂度
现在讨论下直接插入算法的时间复杂度。无论输入如何,算法总会进行n-1轮排序。但是,由于每个元素的插入点是不确定的,受输入数据影响很大,其复杂度并不是一定的。我们可以分最佳、最坏、平均三种情况讨论。
1.最佳情况:由算法特点可知,当待排数组本身即为正序(数组有序且顺序与需要的顺序相同,于我们的讨论前提,即为升序)时为最佳,理由是这种情况下,每个元素只需要比较一次且无需移动。算法的时间复杂度为O(n);
2.最坏情况:很显然,当待排数组为逆序时为最坏情况,这种情况下我们的每轮比较次数为i-1, 赋值次数为i。总的次数为级数2n-1的前n项和,即n^2.算法的时间复杂度为O(n^2);
3.平均情况:由上述分析可以得到平均情况下算法的运算次数大约为(n^2)/2(注:这里计算以赋值和比较计,若按移动和比较,则大约为n^2/4),显然,时间复杂度还是O(n^2)。
至于算法的空间复杂度,所有移动均在数据内部进行,唯一的开销是我们引入了一个临时变量(有的数据结构书上称为“哨兵”),因此,其空间复杂度(额外空间)为O(1)。
算法稳定性
由于只需要找到不大于当前数的位置而并不需要交换,因此,直接插入排序是稳定的排序方法。
算法适用场景
插入排序由于O(n^2)的复杂度,在数组较大的时候不适用。但是,在数据比较少的时候,是一个不错的选择,一般做为快速排序的扩充。例如,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序。又如,在JDK 7 java.util.Arrays所用的sort方法的实现中,当待排数组长度小于47时,会使用插入排序。