编程之美笔记——金刚坐飞机

博客探讨了一道关于100人上飞机找座位的问题,其中第100位乘客找到自己座位的概率。通过数学归纳法分析,得出每个乘客坐到自己座位的概率公式,并对《编程之美》中的一般结论提出疑问,指出结论可能需要根据不同情况讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天看到一道题目,问题描述是这样的:

 

100个人排队上飞机,飞机上有100个座位,每个人对应一个座位,队首的人是个瞎子,上飞机后随便坐,后面的人都尽量找自己的座位,如果已经被占,则随机做,问第100个人坐到自己座位的概率。

 

开始想从第一个人开始递推,结果此路不通。后来google了一下发现有人说这是编程之美上的题目,遂找了份电子版翻了翻,里面“金刚坐飞机”这一小节讲述了该问题的解法。看了其分析过程得到解题启发,上题其实就是书中得出的一般结论的特殊情况。

 

首先利用条件概率将整个概率空间进行划分,假设金刚坐到位置i的条件下第100个人坐到自己座位的概率为f(i),则原题的解为

P = 1/n (f(1) + f(2) + ... + f(99) + f(100))

显然有f(100) = 0,我们反着递推,

f(99) = 1/2

f(98) = 1/3 + 1/3 * f(99)

f(97) = 1/4 + 1/4 * (f(98) + f(99))

...

数学归纳法得

f(i) = [1/(100 - i + 1)](1+ f(i+1) + f(i+2) + ... + f(99))

之后想办法得到通项公式。我先采取的办法是取i为i + 1,意图建立f(i)和f(i+1)的关系式。结果最后推出(101-i)[f(i+1)-f(i)] = 0,101-i>0,故f(i+1)恒等于f(i),这个结果很意外。回去演算一下,果然f(99)&#

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值