题意:有n(3<=n<=100000)个点组成的无向图,保证任意两点间只有一个neighbour点,有两种操作,LENGTH x y求x y之间的最短距离,
若不存在输出-1,DELETE x表示删除第x条边。对于每个LENGTH 询问输出答案。
题解:想想会发现图的一个性质,所有三角形挂在同一个点上,这样首先处理下找出中心后,维护非中心点的同在一个三角形内的另一个点的编号,
像中心方向的边和非中心方向的边是否删除即可。
Sure原创,转载请注明出处
#include <iostream>
#include <cstdio>
#include <memory.h>
using namespace std;
const int maxn = 100002;
struct node
{
int v;
bool center,other;
}po[maxn];
int indegree[maxn],U[maxn * 3],V[maxn * 3];
char str[10];
int m,n,c;
void swap(int &a,int &b)
{
int tmp = a;
a = b;
b = tmp;
return;
}
void init()
{
memset(indegree,0,sizeof(indegree));
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
po[i].v = -1;
po[i].center = po[i].other = true;
}
return;
}
void read()
{
for(int i=0;i<m;i++)
{
scanf("%d %d",&U[i],&V[i]);
indegree[U[i]]++;
indegree[V[i]]++;
}
int d = 0;
for(int i=1;i<=n;i++)
{
if(indegree[i] > d)
{
d = indegree[i];
c = i;
}
}
return;
}
void make()
{
for(int i=0;i<m;i++)
{
if(U[i] != c && V[i] != c)
{
po[U[i]].v = V[i];
po[V[i]].v = U[i];
}
else if(V[i] == c) swap(U[i] , V[i]);
}
return;
}
void solve()
{
int x,y;
while(~scanf("%s",str))
{
if(str[0] == 'L')
{
scanf("%d %d",&x,&y);
if(x == y) puts("0");
else if(x == c || y == c)
{
if(y == c) swap(x , y);
if(po[y].center) puts("1");
else if(po[y].other && po[po[y].v].center) puts("2");
else puts("-1");
}
else if(po[x].v == y)
{
if(po[x].other) puts("1");
else if(po[x].center && po[y].center) puts("2");
else puts("-1");
}
else
{
int a = -1,b = -1;
if(po[x].center) a = 1;
else if(po[x].other && po[po[x].v].center) a = 2;
if(po[y].center) b = 1;
else if(po[y].other && po[po[y].v].center) b = 2;
if(a == -1 || b == -1) puts("-1");
else printf("%d\n",a+b);
}
}
else
{
scanf("%d",&x);
x--;
if(U[x] != c && V[x] != c)
{
po[U[x]].other = po[V[x]].other = false;
}
else
{
po[V[x]].center = false;
}
}
}
return;
}
int main()
{
init();
read();
make();
solve();
return 0;
}