Graveyard(UVa1388)

题意:

在一个周长为10000的圆上有平均分布着n个雕像,现在在这个圆上加上m个雕像,问想要平均分布(n+m)个雕像,最少要把原来的n个雕像一共移动多少距离。

思路:

先求出n个雕像和(n+m)在圆上的平均距离。把n个雕像的圆以任意一个点为起点,求出第i个点的值,用第i个点的值除以(n+m)的圆的点的平均值(化为整数)。求得(n+m)上离i最近的一个点,用这点的值乘以(n+m)的点的平均值。然后再减去i点上的值,就是最短距离,求n个点既为总和。

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

int main()
{
    int n,m;
    while(cin>>n>>m)
    {
        double len_n=10000.0/n;
        double len_nm=10000.0/(n+m);
        double ans=0;
        for(int i=1;i<n;i++)
        {
            double a=i*len_n;
            int b=floor(a/len_nm+0.5);
            ans+=fabs(a-b*len_nm);
        }
        printf("%.4lf\n",ans);

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值