先讲讲二维的吧
平常我们是如何计算一个二维上的长方形的面积的,很简单,长乘宽就可以了
但是如果一个图形他由多个小正方形构成,又如何来计算呢?(只考虑整数)
同样简单,只要设一个二维数组,然后填充这个图形所占据的地方,然后根据这个来计算面积就行了
但是如何填充?
先看看长方形的填充
设二维数组a[100][100],要填充的长方形的最小x坐标是x0 = 1,最小y坐标是y0 = 2,x轴上的长度是x = 2,y轴上的长度是y = 3
第一眼,我们觉得应该如下填充:
for(int i = x0; i <= x0 + x; i++)
for(int j = y0; j <= y0 + y; j++)
a[i][j] = 1;
//1代表填充,0代表没填充
但是如何计算面积呢?是计算已经填充的位置的个数吗,这样我们会发现,计算出来的面积是12,而不是6
为什么?明明我们把长方形上的每一个点都记录了啊?(整数的)
没错,我们记录的是点,而我们刚才计算的,是长方形上点(整数的)的数量,而不是长方形的面积
如何处理?根据点旁边的点分类讨论吗?
太麻烦了,影响效率,而且写起来很烦
这里给出我的解决方法:
把二维数组上的点的意义改变一下,变成这个点代表的是这个点右上角的小正方形(面积为1,你懂的)
所以填充方法得改成这样:
for(int i = x0; i < x0 + x; i++)
for(int j = y0; j < y0 + y; j++)
a[i][j] = 1;
//1代表填充,0代表没填充
只是把等于的条件判断去掉了,然后计算点的数量,就是计算长方形里面的小正方形的数量,而小正方形的面积为1,解决
延申到三维上,只是变成了这个点代表的是x,y,z轴正方向上的一个小正方体
体积的计算是计算点的数量,面积的计算是用dfs或bfs进行计算与判断
同时这个方法可以配合离散化的方法进行优化
详见:Sculpture(UVA 12171)-CSDN博客
不过话说回来,可能只有我一个笨比才会一开始都填充掉
害