本次我们探讨一下迷宫小游戏。
让我们来探讨一下怎样可以得到一条通路,采用栈来实现。
当是通路的时候,节点压栈。当走到尽头不通时,出栈,寻找交叉口,寻找通路。
像这样在第一行存放迷宫的规格(在这里为传参少,定义正方形迷宫),设计迷宫,将迷宫以.txt格式存放在目录下(可以是任何地方,下文以默认路径为例)。
假设入口为(2,0),出口为迷宫最后一行任意位置。
MAZE.h
#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;
#include<assert.h>
#include<stack>
class Pos //迷宫每一点的坐标
{
public:
Pos(int row,int col)
:_row(row)
, _col(col)
{}
int _row;
int _col;
};
void PrintPos(Pos& pos)// 打印节点坐标
{
cout << "(" << pos._row << ", " << pos._col << ") ";
}
int* GetMaze(int& N)//从文件中打开迷宫
{
FILE *font = fopen("maze.txt", "r");
assert(font != NULL);//打不开迷宫文件无意义
char ch;
while ((ch = fgetc(font)) != '\n')
{
N = N * 10 + ch - '0';
}
int *a = new int[N*N];
for (int i = 0; i < N*N, (ch = fgetc(font)) != EOF;)
{
if (ch == '1' || ch == '0')
{
a[i] = ch - '0';
i++;
}
}
return a;
}
void PrintMaze(int *a, const int N)//打印迷宫
{
cout << "\n迷宫地图 ('0'为路, '1'为墙)" << endl;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
cout << a[i * 10 + j] << " ";
}
cout << endl;
}
}
bool IsOverScope(Pos pos, const int N)//判断是否越界
{
if (pos._col < 0 || pos._col >= N || pos._row < 0 || pos._row >= N)
{
return true;
}
return false;
}
bool IsEndPoint(Pos pos, const int N) //判断是否为终点:设迷宫终点为能到达迷宫N-1行
{
if (pos._col >= 0 && pos._col < N && pos._row == N - 1)
{
return true;
}
return false;
}
bool SearchMazePath(int* a, const int N, Pos enrty, stack<Pos>& paths) //寻找通路
{
//若某一位置节点为0,进行压栈,且将数据改为2,寻找此节点上下左右位置为0的节点,再进行压栈,
//若某一位置上下左右没有为0的节点,就出栈寻找上一个节点上下左右为0的节点进行压栈
assert(a);
Pos top = paths.top();
a[top._row*N + top._col] = 2;
while (!IsOverScope(paths.top(), N))//每次都要判断坐标是否越界、还要考虑出口旁边也是出口的情况就会多走几次
{
//判断是否到达出口
if (IsEndPoint(top, N))
{
return true;
}
if (0 == a[(top._row - 1)*N + top._col])//上
{
a[(top._row - 1)*N + top._col] = 2;
Pos tmp(top._row - 1, top._col);
paths.push(tmp);
top = paths.top();
continue;
}
if (0 == a[top._row * N + top._col + 1])//右
{
a[top._row * N + top._col + 1] = 2;
Pos tmp(top._row, top._col + 1);
paths.push(tmp);
top = paths.top();
continue;
}
if (0 == a[(top._row + 1)*N + top._col])//下
{
a[(top._row + 1)*N + top._col] = 2;
Pos tmp(top._row + 1, top._col);
paths.push(tmp);
top = paths.top();
continue;
}
if (0 == a[top._row * N + top._col - 1])//左
{
a[top._row * N + top._col - 1] = 2;
Pos tmp(top._row, top._col - 1);
paths.push(tmp);
top = paths.top();
continue;
}
//if (0 == a[top._row * N + top._col + 1] && top._col + 1 < N)//右
//{
// a[top._row * N + top._col + 1] = 2;
// Pos tmp(top._row, top._col + 1);
// paths.push(tmp);
// top = paths.top();
// continue;
//}
//回退
if (a[top._row*N + top._col] == 2 && !paths.empty())
{
paths.pop();
if (!paths.empty())
{
top = paths.top();
continue;
}
else
{
return false;
}
}
}
//if (IsOverScope(top, N) || paths.empty())//从上左右出来
return false;
}
void PrintPath(stack<Pos> paths) //打印通路
{
//最少Paths中有一个元素enrty在最底层
assert(!paths.empty());
cout << "通路: " << endl;;
while (!paths.empty())
{
PrintPos(paths.top());
paths.pop();
}
cout << endl;
}
test.cpp
#include"MAZE.h"
void test()
{
//假设迷宫为N*N型正方形
int N = 0;
int *a = GetMaze(N);
PrintMaze(a, N);
Pos enrty(2,0);
stack<Pos> paths;
paths.push(enrty);
if (SearchMazePath((int*)a, N, enrty, paths))
{
PrintMaze(a, N);
PrintPath(paths);
}
else
{
PrintMaze(a, N);
cout << "There is not a path in this maze!" << endl;
}
}
int main()
{
test();
system("pause");
return 0;
}
让我们来看看运行结果。
再试试将最后一行的‘0’改为1,让它变成无通路的迷宫
我们可以在思考一下:
当有好几条通路的时候,我们可以得到最短路吗?
我们可以得到以下思路:
记录最小路的步数 ,到达出口时将出口变为1 ,寻找下一条出口,然后更新最短路.
若要寻找这条最短路,那就可以在寻找一次,当通路的步数与最短路步数一致时输出通路。
但是上述方法存在很大的问题:虽然可以得到一个结果,但是不能够保证就是最短的。
因为,当按照上述编程寻找通路的逻辑 “上右下左” 顺序寻找通路时,就可能会把另一条更短的通路堵住,从而影响最短路的结果。
那到底怎么做呢? 期待下一篇博客。