lambda
初印象,长得像匿名函数:
(parameters) -> expression
(parameters) -> { statements; }
ClassName::staticMethod
lambda表达式只能引用标记了final的外层局部变量。
int d = 0;
MathOperation addition = (a, b) -> {
return a + b + d;
};
d = 1;
考虑如上场景,有什么问题?
List<Integer> list = new ArrayList<>();
list.add(1);
MathOperation addition = (a, b) -> {
list.add(2);
return a + b;
};
System.out.println(addition.operate(3, 4));
System.out.println(list);
考虑如上场景,list输出结果是?
类似于方法调用可变更引用参数,但是变更不了常量参数。
functional programming
函数式编程的理论基础:lambda演算。
lambda演算有两种方式:应用、抽象。
应用,从左到右:
* ( + 1 2) 3 = * 3 3 = 9
抽象(函数),从右往左:
(λx.x + 2) 3 // 3 + 2
(λx.x 3) (λx.x + 2) // 3 + 2
λx.λy (xy) = λxy.(xy) // 多个抽象合并一个λ
(λxyz. + (+ x z) y) 1 2 3 // +((+1)3)2 >> 6
函数的参数只能有一个,但是函数的输入和输出也可以函数。
λx λy λz +(+xz)y
λx (λy λz +(+xz)y) 1
λx (λy (λz +(+xz)y) 2) 1
λx (λy (λz (+(+xz)y) 3) 2) 1
λy (λz (+(+1z)y 3) 2)
λz (+(+1z)2 3)
+((+1)3)2
λ演算 (Lambda Calculus) 一 : 定义与函数式编程 - IP=PSPACE - 博客园
λ演算(Lambda Calculus)入门基础(一):定义与归约 - 简书
为了避免歧义,多使用小括号,另外:
函数是尽可能地向右扩展,应用是左结合的。
λy.xy
>> (λy.xy) // √
>> (λy.x) y // x
M N P
>> (M N) P // √
>> M (N P) // x
自由变量和绑定变量
FV(λx.xy) = {y} // binding: x
FV((λy.y)(λx.xy)) = {y} // binding: y1, x
FV(λx.(λy.xyz)) = {z} // binding: x, y
Currying
当函数需要有多个参数时,使用柯里化做转化。
currying: λx y.xy = λx.(λy.xy)
前者是后者的简写。
reduction
β规约
替换,E[V:=R]
规约,((λV.E) E′) ≡ E[V := E′]
(λx.x)y >> x[x:=y] >> y
x[x := N] >> N
y[x := N] >> y
(M1 M2)[x := N] >> (M1[x := N]) (M2[x := N])
(λx.M)[x := N] >> λx.M
(λy.M)[x := N] >> λy.(M[x := N])
α转换
设想如下替换
(λx.(λy.xy)) y
= (λy.xy)[x:=y]
= λy.yy
使用α转换,一个函数抽象在更名绑定变量前后是等价的。
α: λx.x = λy.y
再次尝试
(λx.(λy.xy))y
= (λy.xy)[x:=y] // β
= (λz.xz)[x:=y] // α
= λz.yz
η规约
λx.M x >> M
M不包含x,x是冗余的,η的作用就是清除这种冗余函数。
λ演算(Lambda Calculus)入门基础(二):丘奇编码(Church Encoding) - 简书
Church Numberals
丘奇数就是λ演算中的"自然数",代表将函数作用于参数的次数。
0 ≡ λf.λx.x
1 ≡ λf.λx.f x
2 ≡ λf.λx.f (f x)
3 ≡ λf.λx.f (f (f x))
...
S ≡ λn.λf.λx.f (n f x)
验证: S(0)=1
S 0
≡ (λn.λf.λx.f (n f x)) λf.λx.x
= (λf.λx.f (n f x))[n := λf.λx.x] // β
= (λg.λy.g (n g y))[n := λf.λx.x] // α
= λg.λy.g ((λf.λx.x) g y) // substitute
= λg.λy.g (x[f := g, x := y]) // β
= λg.λy.g y // substitute
≡ 1
更多运算和验证内容不再赘述(反正也看不懂)。
凯哥带你从零学大数据系列之Java篇---第二十二章:Lambda表达式 - 知乎
lambda表达式,只能实现函数式接口。
函数式接口,就是实现类必须实现的抽象方法,有且只有一个的接口。
@FunctionalInterface
interface MathOperation {
int operation(int a, int b);
}
通过注解@FunctionalInterface可判断接口是否是函数式接口。
interface Foo {
String toString();
}
interface Bar {
void test();
default void test1() {}
static void test2() {}
String toString();
}
考虑如上接口,是否是函数式接口?
接下来介绍几个系统内置的函数式接口:
Function,Predicate,Consumer,Supplier,UnaryOperator,Bi*
Function
@FunctionalInterface
public interface Function<T, R> {
R apply(T t);
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
static <T> Function<T, T> identity() {
return t -> t;
}
}
compose和andThen执行顺序相反。
public static int andThen(int a, Function<Integer, Integer> f1,
Function<Integer, Integer> f2) {
return f1.andThen(f2).apply(a);
}
public static int compose(int a, Function<Integer, Integer> f1,
Function<Integer, Integer> f2) {
return f1.compose(f2).apply(a);
}
public static void main(String[] args) {
int d1 = compose(2, v -> v * 3, v -> v * v);
System.out.println(d1);
int d2 = andThen(2, v -> v * 3, v -> v * v);
System.out.println(d2);
}
考虑如上场景,输出结果是?
BiFunction
@FunctionalInterface
public interface BiFunction<T, U, R> {
R apply(T t, U u);
default <V> BiFunction<T, U, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t, U u) -> after.apply(apply(t, u));
}
}
顾名思义,BiFunction可以接收两个参数,比Function少了一个compose方法,因为Java中方法的返回值只能有一个。
Predicate
@FunctionalInterface
public interface Predicate<T> {
boolean test(T t);
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
}
default Predicate<T> negate() {
return (t) -> !test(t);
}
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
: object -> targetRef.equals(object);
}
}
典型场景:过滤和判断,比如stream filter。
Consumer
@FunctionalInterface
public interface Consumer<T> {
void accept(T t);
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}
执行一个void方法,典型案例:
public interface Iterable<T> {
Iterator<T> iterator();
default void forEach(Consumer<? super T> action) {
Objects.requireNonNull(action);
for (T t : this) {
action.accept(t);
}
}
default Spliterator<T> spliterator() {
return Spliterators.spliteratorUnknownSize(iterator(), 0);
}
}
Supplier
@FunctionalInterface
public interface Supplier<T> {
T get();
}
调用get会构建一个T实例。
在Optional中可以找到Supplier/Consumer/Predicate的典型案例。
public final class Optional<T> {
public void ifPresent(Consumer<? super T> consumer) {
if (value != null)
consumer.accept(value);
}
public Optional<T> filter(Predicate<? super T> predicate) {
Objects.requireNonNull(predicate);
if (!isPresent())
return this;
else
return predicate.test(value) ? this : empty();
}
public T orElseGet(Supplier<? extends T> other) {
return value != null ? value : other.get();
}
public <X extends Throwable> T orElseThrow(Supplier<? extends X> exceptionSupplier) throws X {
if (value != null) {
return value;
} else {
throw exceptionSupplier.get();
}
}
}
UnaryOperator
@FunctionalInterface
public interface UnaryOperator<T> extends Function<T, T> {
static <T> UnaryOperator<T> identity() {
return t -> t;
}
}
一元函数,典型案例:List接口。
public interface List<E> extends Collection<E> {
default void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final ListIterator<E> li = this.listIterator();
while (li.hasNext()) {
li.set(operator.apply(li.next()));
}
}
}
Bi*接口指以上函数式接口的二元实现,如BinaryOperator之于UnaryOperator,BiFunction之于Function。
Optional
public final class Optional<T> {
private static final Optional<?> EMPTY = new Optional<>();
private final T value;
private Optional() {
this.value = null;
}
public static<T> Optional<T> empty() {
@SuppressWarnings("unchecked")
Optional<T> t = (Optional<T>) EMPTY;
return t;
}
private Optional(T value) {
this.value = Objects.requireNonNull(value);
}
public static <T> Optional<T> of(T value) {
return new Optional<>(value);
}
public static <T> Optional<T> ofNullable(T value) {
return value == null ? empty() : of(value);
}
public T get() {
if (value == null) {
throw new NoSuchElementException("No value present");
}
return value;
}
public boolean isPresent() {
return value != null;
}
public void ifPresent(Consumer<? super T> consumer) {
if (value != null)
consumer.accept(value);
}
public Optional<T> filter(Predicate<? super T> predicate) {
Objects.requireNonNull(predicate);
if (!isPresent())
return this;
else
return predicate.test(value) ? this : empty();
}
public<U> Optional<U> map(Function<? super T, ? extends U> mapper) {
Objects.requireNonNull(mapper);
if (!isPresent())
return empty();
else {
return Optional.ofNullable(mapper.apply(value));
}
}
public<U> Optional<U> flatMap(Function<? super T, Optional<U>> mapper) {
Objects.requireNonNull(mapper);
if (!isPresent())
return empty();
else {
return Objects.requireNonNull(mapper.apply(value));
}
}
public T orElse(T other) {
return value != null ? value : other;
}
public T orElseGet(Supplier<? extends T> other) {
return value != null ? value : other.get();
}
public <X extends Throwable> T orElseThrow(Supplier<? extends X> exceptionSupplier) throws X {
if (value != null) {
return value;
} else {
throw exceptionSupplier.get();
}
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (!(obj instanceof Optional)) {
return false;
}
Optional<?> other = (Optional<?>) obj;
return Objects.equals(value, other.value);
}
@Override
public int hashCode() {
return Objects.hashCode(value);
}
@Override
public String toString() {
return value != null
? String.format("Optional[%s]", value)
: "Optional.empty";
}
}
Stream
stream的操作符大致分成两种:中间操作符和终止操作符。
中间操作符
filter,map,flatMap,distinct,sorted,peek,limit,skip。
终止操作符
forEach,reduce,toArray,collect,min,max,count,
findFirst,findAny,noneMatch,allMatch,anyMatch。
实例:
// ["Hello", "World"]
List<String> chars = words.stream()
.flatMap(word -> Arrays.stream(word.split("")))
.skip(2)
.peek(System.out::println)
.collect(toList());
// [1, 2, 3]
list.stream().reduce((a, b) -> a > b ? a : b);
list.stream().max(Integer::compareTo);
Date
时间处理方法,优点是好用、线程安全,实例如下:
LocalDateTime now = LocalDateTime.now();
LocalDate today = now.toLocalDate();
LocalDate tomorrow = today.plusDays(1);
LocalDate nextMonth = today.plusMonths(1);
LocalDate firstDayOfMonth = today.withDayOfMonth(1);
LocalDate lastDayOfMonth = firstDayOfMonth.with(TemporalAdjusters.lastDayOfMonth());
LocalDate firstDayOfYear = today.withDayOfYear(1);
LocalDate lastDayOfYear = firstDayOfYear.with(TemporalAdjusters.lastDayOfYear());
LocalDateTime eight = now.withHour(8);
String format = eight.format(DateTimeFormatter.ofPattern("yyyy-MM-dd hh:mm:ss"));
Timestamp timestamp = Timestamp.valueOf(eight);
long days = lastDayOfYear.toEpochDay() - firstDayOfYear.toEpochDay();