Educational Codeforces Round 105 (Rated for Div. 2) A&B

A. ABC String

题目链接

http://codeforces.com/contest/1494/problem/A

题目大意

给定一个仅由’A’,‘B’,‘C’构成的字符串,如“AABBAC”
现将字符串中的A、B、C替换成 ‘(’ 或 ‘)’.
替换过程中,需要保证所有相同的符号,只能替换成同一中括号。如所有的A都替换成‘(’。问,替换之后构成的 ‘(’,’)’ 字符串,是不是正则括号序列(regular bracket sequence)。
如:
“(()())”是
“()()(())”是
“())(”不是

解题思路 枚举

只有ABC三种字符,每种符号只能都替换成’(‘或’)’,共有2^3 = 8种情况。为了构成正则括号序列,显然,ABC都替换成’(‘或‘)’时,无法构成正则括号序列。从而,有8-2=6种情况。
可以定义’(’=1 ,’)’=-1,显然正则括号序列的和 ans 必然为0。从而,枚举判定6种替换情况即可。
但要注意:

  • 需要保证整个括号序列处理完毕,即 ans == 0 && j == len
  • 为了防止出现")))((("这种情况,需要设置条件 ans >= 0 (此时假设(=1,)=-1,当序列头部出现多余的“)”.情况时,ans < 0,必然不是正则括号序列,停止判定)
  • 也可以假设(=-1,)=1,显然此时,ans <= 0,当括号序列头部出现多余的")"时,ans > 0,必然不是正则括号序列,停止判定
#include<bits/stdc++.h>
using namespace std;

int x[6][3] = {1,-1,1, 1,-1,-1, 1,1,-1, -1,-1,1, -1,1,-1, -1,1,1 };

int main(){
	int _;
	cin >> _;
	while(_--){
		string s;
		cin >> s;
		int f = 0;
		int j = 0;
		for(int i = 0;i < 6;i++){
			int ans = 0;
			int len = s.length();
			// ans >= 0   或  ans <= 0 都可以AC
			for(j = 0;j < len && ans >= 0;j++){
				ans += x[i][s[j] - 'A'];
			}
			//保证整个序列扫描完毕
			if(ans == 0 && j == len){
				f = 1;
				break;
			}
		}
		if(f == 1){
			cout << "YES\n";
		}else{
			cout << "NO\n";
		}
	}
	return 0;
}

B. Berland Crossword

题目链接

http://codeforces.com/contest/1494/problem/B

题目大意

game
在一个n * n的白色块图形中,URDL分别代表上、右、下、左边界的黑色块数。给定四个整数 n u r d l ,问,这样的图形是否存在。
如“5 2 5 3 1 ”,存在这种图形,即上图。

解题思路 状态压缩

初步分析,可以发现四个角(左上a、右上b、右下c、左下d)是否是黑色非常关键——将影响相交的两边的黑色块数。
比如上图中,a=1(黑色),b=1,c=1,d=0。ab相连的U边的黑色块数满足:2 <= x <= n
同理:
R:2 <= x <= n (至少两个,最多n个)
D:1 <= x <= n - 1(至少有一个黑色,且为右下角,最多有n-1黑色,左下角必不能为黑色d = 0)
L::1 <= x <= n- 1 (至少1个,最多n-1个)
从而,我们就可以发现针对 a=1,b=1,c=1,d=0时,当图像存在时,每条边需要满足的黑丝块数的限制条件。
显然,状态压缩可解,共有2^4 = 16种情况。
通过状态压缩枚举不同情况时,我们可以发现,每条边的黑色数量x,满足如下三种情况:

  • 0 <= x <= n-2【该边的两个端点都是白色】 (1)
  • 1 <= x <= n-1【该边的两个端点中只有一个是黑色】(2)
  • 2 <= x <= n【该边的两个端点中都是黑色】(3)

针对"0001"【a=0,b=0,c=0,d=1】,各边(URDL)需要满足的条件分别是 1 1 2 2

然后就可以发现规律了:

			for(int k = 0;k < 4;k++){
					int ss = x[k] + x[(k + 1) % 4];
					if(ss == 0){
						vv.pb(1);
					}else if(ss == 1){
						vv.pb(2);
					}else if(ss == 2){
						vv.pb(3);
					}
				}

最后,枚举每种情况,判定整数u r d l ,能不能满足图形构成的条件
代码如下

#include<bits/stdc++.h>
using namespace std;
#define pb push_back

int main(){
	int t;
	cin >> t;
	while(t--){
		int n;
		cin >> n ;
		vector<int> v;
		for(int i = 0;i < 4;i++){
			int temp;
			cin >> temp;
			v.pb(temp);
		}
		int a = 0,b = 0,c = 0,d = 0;
		int f = 1;
		for(int i = 0;i < 4;i++){
			if(v[i] > n){
				f = 0;
				break;
			}
		}
		if(f == 1){
			int res = 0;
			//状态压缩0000~1111
			for(int i = 0;i < 16;i++){
				//cout << i << endl;
				int num = i;
				int x[4] = {0};
				int j = 3;
				while(num){
					x[j] = (num & 1);
					j--;
					num >>= 1;
				} 
				//判定需要满足的条件
				vector<int> vv;
				for(int k = 0;k < 4;k++){
					int ss = x[k] + x[(k + 1) % 4];
					if(ss == 0){
						vv.pb(1);
					}else if(ss == 1){
						vv.pb(2);
					}else if(ss == 2){
						vv.pb(3);
					}
				}
				int fff = 1;
				for(int k = 0;k < 4;k++){
					// vv 三种基本条件
					int ss = vv[k];
					// v 存放u r d l 四整数,每个边的黑色块数
					if(ss == 1){
						if(v[k] >= 0 && v[k] <= n - 2){
							fff *= 1; // *1 / *0是为了四条边中,当有一个条件不满足时,直接判定无法构成图形
						}else{
							fff *= 0;
						}
					}else if(ss == 2){
						if(v[k] >= 1 && v[k] <= n - 1){
							fff *= 1;
						}else{
							fff *= 0;
						}
					}else if(ss == 3){
						if(v[k] >= 2 && v[k] <= n){
							fff *= 1;
						}else{
							fff *= 0;
						}
					}
				}
				if(fff == 1){
					res = 1;
					break;
				}else{
					res = 0;
				}
			}
			if(res == 1){
				cout << "YES\n";
			}else{
				cout << "NO\n";
			}
		}else{
			cout << "NO\n";
		}
	} 
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值