A. ABC String
题目链接
http://codeforces.com/contest/1494/problem/A
题目大意
给定一个仅由’A’,‘B’,‘C’构成的字符串,如“AABBAC”
现将字符串中的A、B、C替换成 ‘(’ 或 ‘)’.
替换过程中,需要保证所有相同的符号,只能替换成同一中括号。如所有的A都替换成‘(’。问,替换之后构成的 ‘(’,’)’ 字符串,是不是正则括号序列(regular bracket sequence)。
如:
“(()())”是
“()()(())”是
“())(”不是
解题思路 枚举
只有ABC三种字符,每种符号只能都替换成’(‘或’)’,共有2^3 = 8种情况。为了构成正则括号序列,显然,ABC都替换成’(‘或‘)’时,无法构成正则括号序列。从而,有8-2=6种情况。
可以定义’(’=1 ,’)’=-1,显然正则括号序列的和 ans 必然为0。从而,枚举判定6种替换情况即可。
但要注意:
- 需要保证整个括号序列处理完毕,即 ans == 0 && j == len
- 为了防止出现")))((("这种情况,需要设置条件 ans >= 0 (此时假设(=1,)=-1,当序列头部出现多余的“)”.情况时,ans < 0,必然不是正则括号序列,停止判定)
- 也可以假设(=-1,)=1,显然此时,ans <= 0,当括号序列头部出现多余的")"时,ans > 0,必然不是正则括号序列,停止判定
#include<bits/stdc++.h>
using namespace std;
int x[6][3] = {1,-1,1, 1,-1,-1, 1,1,-1, -1,-1,1, -1,1,-1, -1,1,1 };
int main(){
int _;
cin >> _;
while(_--){
string s;
cin >> s;
int f = 0;
int j = 0;
for(int i = 0;i < 6;i++){
int ans = 0;
int len = s.length();
// ans >= 0 或 ans <= 0 都可以AC
for(j = 0;j < len && ans >= 0;j++){
ans += x[i][s[j] - 'A'];
}
//保证整个序列扫描完毕
if(ans == 0 && j == len){
f = 1;
break;
}
}
if(f == 1){
cout << "YES\n";
}else{
cout << "NO\n";
}
}
return 0;
}
B. Berland Crossword
题目链接
http://codeforces.com/contest/1494/problem/B
题目大意
在一个n * n的白色块图形中,URDL分别代表上、右、下、左边界的黑色块数。给定四个整数 n u r d l ,问,这样的图形是否存在。
如“5 2 5 3 1 ”,存在这种图形,即上图。
解题思路 状态压缩
初步分析,可以发现四个角(左上a、右上b、右下c、左下d)是否是黑色非常关键——将影响相交的两边的黑色块数。
比如上图中,a=1(黑色),b=1,c=1,d=0。ab相连的U边的黑色块数满足:2 <= x <= n
同理:
R:2 <= x <= n (至少两个,最多n个)
D:1 <= x <= n - 1(至少有一个黑色,且为右下角,最多有n-1黑色,左下角必不能为黑色d = 0)
L::1 <= x <= n- 1 (至少1个,最多n-1个)
从而,我们就可以发现针对 a=1,b=1,c=1,d=0时,当图像存在时,每条边需要满足的黑丝块数的限制条件。
显然,状态压缩可解,共有2^4 = 16种情况。
通过状态压缩枚举不同情况时,我们可以发现,每条边的黑色数量x,满足如下三种情况:
- 0 <= x <= n-2【该边的两个端点都是白色】 (1)
- 1 <= x <= n-1【该边的两个端点中只有一个是黑色】(2)
- 2 <= x <= n【该边的两个端点中都是黑色】(3)
针对"0001"【a=0,b=0,c=0,d=1】,各边(URDL)需要满足的条件分别是 1 1 2 2
…
然后就可以发现规律了:
for(int k = 0;k < 4;k++){
int ss = x[k] + x[(k + 1) % 4];
if(ss == 0){
vv.pb(1);
}else if(ss == 1){
vv.pb(2);
}else if(ss == 2){
vv.pb(3);
}
}
最后,枚举每种情况,判定整数u r d l ,能不能满足图形构成的条件
代码如下
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
int main(){
int t;
cin >> t;
while(t--){
int n;
cin >> n ;
vector<int> v;
for(int i = 0;i < 4;i++){
int temp;
cin >> temp;
v.pb(temp);
}
int a = 0,b = 0,c = 0,d = 0;
int f = 1;
for(int i = 0;i < 4;i++){
if(v[i] > n){
f = 0;
break;
}
}
if(f == 1){
int res = 0;
//状态压缩0000~1111
for(int i = 0;i < 16;i++){
//cout << i << endl;
int num = i;
int x[4] = {0};
int j = 3;
while(num){
x[j] = (num & 1);
j--;
num >>= 1;
}
//判定需要满足的条件
vector<int> vv;
for(int k = 0;k < 4;k++){
int ss = x[k] + x[(k + 1) % 4];
if(ss == 0){
vv.pb(1);
}else if(ss == 1){
vv.pb(2);
}else if(ss == 2){
vv.pb(3);
}
}
int fff = 1;
for(int k = 0;k < 4;k++){
// vv 三种基本条件
int ss = vv[k];
// v 存放u r d l 四整数,每个边的黑色块数
if(ss == 1){
if(v[k] >= 0 && v[k] <= n - 2){
fff *= 1; // *1 / *0是为了四条边中,当有一个条件不满足时,直接判定无法构成图形
}else{
fff *= 0;
}
}else if(ss == 2){
if(v[k] >= 1 && v[k] <= n - 1){
fff *= 1;
}else{
fff *= 0;
}
}else if(ss == 3){
if(v[k] >= 2 && v[k] <= n){
fff *= 1;
}else{
fff *= 0;
}
}
}
if(fff == 1){
res = 1;
break;
}else{
res = 0;
}
}
if(res == 1){
cout << "YES\n";
}else{
cout << "NO\n";
}
}else{
cout << "NO\n";
}
}
return 0;
}