BZOJ 2154 Crash的数字表格 莫比乌斯反演

BZOJ 2154 Crash的数字表格

跟着litble学套路

Solution

题目要求:

i=1nj=1mLCM(i,j) ∑ i = 1 n ∑ j = 1 m L C M ( i , j )

开始疯狂套路

0x00

首先化为常见的 gcd g c d 的形式

i=1nj=1mijgcd(i,j) ∑ i = 1 n ∑ j = 1 m i j g c d ( i , j )

0x01

然后枚举 gcd g c d

d=1ni=1nj=1mijd[gcd(i,j)==d] ∑ d = 1 n ∑ i = 1 n ∑ j = 1 m i j d ∗ [ g c d ( i , j ) == d ]

0x02

接着将 gcd(a,b)==d g c d ( a , b ) == d 变为 gcd(a/d,b/d)==1 g c d ( a / d , b / d ) == 1

d=1ni=1ndj=1mdijd[gcd(i,j)==1] ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j d ∗ [ g c d ( i , j ) == 1 ]

0x03

其次我们通过莫比乌斯函数的性质

d|nμ(d)={10n=1otherwise ∑ d | n μ ( d ) = { 1 n = 1 0 o t h e r w i s e

[gcd(i,j)==1] [ g c d ( i , j ) == 1 ] 转化为 t|gcd(i,j)μ(t) ∑ t | g c d ( i , j ) μ ( t ) ,即 t|it|jμ(t) ∑ t | i ∧ t | j μ ( t )
d=1ni=1ndj=1mdijdt|it|jμ(t) ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j d ∗ ∑ t | i ∧ t | j μ ( t )

0x04

下一步枚举 t t
同时i,j也会变形,变为枚举 t t 的倍数

d=1ndt=1ndμ(t)(ti=1ndti)(tj=1mdtj)

假设 sum(n) s u m ( n ) 表示 1n 1 ⋯ n 的和,即 ni=1i ∑ i = 1 n i
则原式为

d=1ndt=1ndμ(t)t2sum(ndt)sum(mdt) ∑ d = 1 n d ∑ t = 1 ⌊ n d ⌋ μ ( t ) ∗ t 2 ∗ s u m ( ⌊ n d t ⌋ ) ∗ s u m ( ⌊ m d t ⌋ )

0x05

T=td T = t d ,枚举 T T

T=1nd|Tn(T2/d)μ(Td)sum(nT)sum(mT)

0x06

T=1nsum(nT)sum(mT)Tt|Tntμ(t) ∑ T = 1 n s u m ( ⌊ n T ⌋ ) ∗ s u m ( ⌊ m T ⌋ ) ∗ T ∑ t | T n t ∗ μ ( t )

0x06

F(T)=Tnt|Ttμ(t) F ( T ) = T ∑ t | T n t ∗ μ ( t )
话说差点忘了 d d 导致没推出来,想了好久

T=1nF(T)sum(nT)sum(mT)

搞定

你以为这样就完了??

不存在的
还有一个反套路的点
如何求 F(T) F ( T ) ?
显然是卷积的形式
那么它同时也是一个积性函数
所以按理来说应该可以线性筛
我们考虑新增一个质因数 p p
原来处理出来了F[i]
imodp0 i mod p ≠ 0

F[ip]=F[i]+F[i](1)p F [ i ∗ p ] = F [ i ] + F [ i ] ∗ ( − 1 ) ∗ p

F[ip]=F[i]F[p] F [ i ∗ p ] = F [ i ] ∗ F [ p ]

imodp=0 i mod p = 0
F[ip]=F[i] F [ i ∗ p ] = F [ i ]

代码如下:

#include <bits/stdc++.h>
using namespace std;
const int N = 10000005;
const int mod = 20101009;
int pri[N],tot,mu[N],n,m;
long long f[N];
long long s[N];
bool mark[N];
void get() {
    mu[1]=1;
    f[1]=1;
    for(register int i=2;i<=10000000;++i) {
        if(!mark[i]) {
            pri[++tot]=i;
            f[i]=1-i;
            mu[i]=-1;
        }
        for(register int j=1;j<=tot && pri[j]*i<=10000000;++j) {
            mark[i*pri[j]]=1;
            if(i%pri[j]==0) { 
                f[i*pri[j]]=f[i];
                break;
            }
            f[i*pri[j]]=f[i]*f[pri[j]]%mod;
            mu[i*pri[j]]=-mu[i];
        }
    }
    for(register int i=1;i<=10000000;++i) {
        f[i]=((f[i]*i)%mod+f[i-1])%mod;
        s[i]=(s[i-1]+i)%mod;
    }
}
int main() {
    get();
    scanf("%d%d",&n,&m);
    if(n>m) swap(n,m);
    int pos=0,ans=0;
    for(int i=1;i<=n;i=pos+1) {
        pos=min(n/(n/i),m/(m/i));
        ans=(ans+(f[pos]-f[i-1]+mod)%mod*s[n/i]%mod*s[m/i]%mod)%mod;
    }
    printf("%d\n",(ans+mod)%mod);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值