题意:给出一棵树,边上有权值,现在毁掉任意一条边,分成两部分,求这两部分中最远的两点距离期望,答案*(n-1)
分析:
说白了就是求最远距离加成和
对于一棵树来说,两点最远的距离,考虑两点:
1.最长链没有被拆开,那么答案就是最长链;
2.最长链被拆开了,那么答案一定在最长链的端点到某个叶子结点上;
证明略。
有了这个结论,这个题就好做了,首先预处理出最长链,数组存下来,然后对于每个最长链上的结点预处理出它的权值最大的叶子结点(不在最长链上),剩下的就是处理最长链左边和右边的拆开后的最大值了,左右扫一遍,两个数组LR存下来,最后On扫一遍最长链,取LR中最大值得到答案。
复杂度On
比赛写的急,代码有些挫
#include<cstring>
#include<string>
#include<iostream>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<map>
#include<cstdlib>
#include<cmath>
#include<vector>
//#pragma comment(linker, "/STACK:1024000000,1024000000");
using namespace std;
#define INF 0x3f3f3f3f
#define maxn 200014
long long L[maxn],R[maxn];
int fir[maxn],nex[maxn],v[maxn],w[maxn],e_max;
int p[maxn],len,vis[maxn];
long long cost[maxn],cost1[maxn];
void init()
{
len=0;
memset(L,0,sizeof L);
memset(R,0,sizeof R);
memset(cost,0,sizeof cost);
memset(cost1,0,sizeof cost1);
memset(vis,0,sizeof vis);
memset(fir,-1,sizeof fir);
e_max=0;
}
void add_edge(int s,int t,int c)
{
int e=e_max++;
v[e]=t;
w[e]=c;
nex[e]=fir[s];
fir[s]=e;
}
int temp,add;
void dfs1(int k,long long sum,int pre)
{
if(sum>add) temp=k,add=sum;
for(int i=fir[k];~i;i=nex[i])
{
int e=v[i];
if(e==pre) continue;
dfs1(e,sum+w[i],k);
}
}
int ok;
int dfs2(int s,int t,int pre,long long sum)
{
if(s==t)
{
ok=1;
return t;
}
for(int i=fir[s];~i;i=nex[i])
{
int e=v[i];
if(e==pre) continue;
int tag=dfs2(e,t,s,sum+w[i]);
if(ok)
{
vis[tag]=1;
cost[len]=sum+w[i];
p[len++]=tag;
return s;
}
}
return s;
}
long long dfs3(int k,int pre)
{
long long mx=0;
for(int i=fir[k];~i;i=nex[i])
{
int e=v[i];
if(vis[e]||e==pre) continue;
mx=max(mx,dfs3(e,k)+w[i]);
}
return mx;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
init();
int n;
scanf("%d",&n);
for(int i=1;i<n;i++)
{
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
add_edge(a,b,w);
add_edge(b,a,w);
}
add=0;dfs1(1,0,-1);
int s=temp;
add=0;dfs1(s,0,-1);
int t=temp;
long long sd=add;
long long ans=0;
ok=0;
dfs2(s,t,-1,0);
p[len++]=s;
vis[s]=1;
for(int i=1;i<len-1;i++)
{
cost1[i]=dfs3(p[i],-1);
}
ans+=sd*(n-len);
long long temp=0,ss=0;
for(int i=0;i<len;i++)
{
L[i]=max(sd-cost[i]+cost1[i],temp);
temp=max(L[i],temp);
}
temp=0;
for(int i=len-1;i>=0;i--)
{
R[i]=max(cost[i]+cost1[i],temp);
temp=max(R[i],temp);
}
for(int i=0;i<len-1;i++)
{
ans+=max(L[i],R[i+1]);
}
printf("%I64d\n",ans);
}
return 0;
}