【NOI2006 Day2 T1】最大获利
Time Limit:20000MS Memory Limit:65536K
Total Submit:66 Accepted:41
Case Time Limit:2000MS
Description
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。 THU集团旗下的 CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。
在前期市场调查和站址勘测之后,公司得到了一共 N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第 i个通讯中转站需要的成本为 Pi(1≤i≤N)。
另外公司调查得出了所有期望中的用户群,一共 M个。关于第 i个用户群的信息概括为 Ai, Bi和 Ci:这些用户会使用中转站 Ai和中转站 Bi进行通讯,公司可以获益 Ci。(1≤i≤M, 1≤Ai, Bi≤N)
THU集团的 CS&T 公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 – 投入成本之和)
Input
输入中第一行有两个正整数N 和M 。
第二行中有 N 个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。
以下 M 行,第(i + 2)行的三个数 Ai, Bi 和 Ci 描述第 i 个用户群的信息。
所有变量的含义可以参见题目描述。
Output
你的程序只要输出一个整数,表示公司可以得到的最大净获利。
Sample Input
5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3
Sample Output
4
Hint
80%的数据中:N≤200,M≤1 000。
100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。
Source
NOI 2006 网络流
看的 nodgd 的题解(http://oi.nks.edu.cn/showproblem?problem_id=1522)才会的。
以下引用 nodgd 的原文
“
想必你一定想过这样建图:每个中转站拆成两个点,每个客户是一条边........但是总是行不通。 实际上这道题建图确实比较神奇比较机智比较巧妙。 我们把(1)源点连边向每个中转站,容量为修建的费用;(2)中转站连边向相应的客户,容量无穷大;(3)客户连边向汇点,容量为这个客户制造的获利。跑完最大流之后用所有客户的获利总和减去最大流即可。 为什么这样建图是正确的?我们来考虑一下这个图的某个最小割: 1.最小割边集合一定不含(2)类边,因为这样就不满足最小性了; 2.割边集合中的所有(1)类边,表示需要修建的中转站; 3.割边集合中的所有(3)类边,表示被放弃的客户。 于是这个割当然越小越好!!那当然是最小割,也就是最大流。 于是 最终答案==获得的利润-修建的费用 ==所有客户的获利总和-(需要放弃的客户+修建的费用) ==所有客户的获利总和-最大流 剩下的就是SAP裸跑一次就可以了。
#include<cstdio>
using namespace std;
#define inf 2000000000
#define maxet 350000
#define maxn 5009
#define maxm 50009
#define maxv (1+maxn+maxm+1)
int end[maxet], len[maxet], next[maxet], last[maxv], opp[maxet];
int et=0;
int vt, dis[maxv], vd[maxv];
int Min(int a, int b)
{
return a<b?a:b;
}
int dfs(int u, int flow)
{
int temp, v, delta, i, e;
if(u==vt)return flow;
delta=0;
for(i=last[u]; i; i=next[i])
{
e=end[i];
if(len[i]>0&&dis[u]==dis[e]+1)
{
temp=dfs(e, Min(flow-delta, len[i]));
len[i]-=temp;
len[opp[i]]+=temp;
delta+=temp;
if(delta==flow||dis[1]>=vt)return delta;
}
}
if(dis[1]>=vt)return delta;
vd[dis[u]]--;
if(vd[dis[u]]==0)dis[1]=vt;
dis[u]++;
vd[dis[u]]++;
return delta;
}
void adde(int s, int e, int c)
{
et++;
end[et]=e;
len[et]=c;
next[et]=last[s];
last[s]=et;
}
void addde(int s, int e, int c)
{
adde(s, e, c);
opp[et]=et+1;
adde(e, s, 0);
opp[et]=et-1;
}
int main()
{
int maxflow=0;
int ct=0;
int a, b, c;
int i;
int n, m, t;
scanf("%d%d", &n, &m);
vt=1+n+m+1;
for(i=1; i<=n; i++)
{
scanf("%d", &t);
addde(1, i+1, t);
}
for(i=1; i<=m; i++)
{
scanf("%d%d%d", &a, &b, &c);
addde(1+a, 1+n+i, inf);
addde(1+b, 1+n+i, inf);
addde(1+n+i, vt, c);
ct+=c;
}
while(dis[1]<vt)
{
maxflow+=dfs(1, inf);
}
printf("%d", ct-maxflow);
return 0;
}