【NOI2006 Day2 T1】最大获利

4 篇文章 0 订阅
1 篇文章 0 订阅

【NOI2006 Day2 T1】最大获利

Time Limit:20000MS  Memory Limit:65536K
Total Submit:66 Accepted:41 
Case Time Limit:2000MS

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。 THU集团旗下的 CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。 
在前期市场调查和站址勘测之后,公司得到了一共 N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第 i个通讯中转站需要的成本为 Pi(1≤i≤N)。 
另外公司调查得出了所有期望中的用户群,一共 M个。关于第 i个用户群的信息概括为 Ai, Bi和 Ci:这些用户会使用中转站 Ai和中转站 Bi进行通讯,公司可以获益 Ci。(1≤i≤M, 1≤Ai, Bi≤N) 
THU集团的 CS&T 公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 – 投入成本之和)

Input

输入中第一行有两个正整数N 和M 。 
第二行中有 N 个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。 
以下 M 行,第(i + 2)行的三个数 Ai, Bi 和 Ci 描述第 i 个用户群的信息。 
所有变量的含义可以参见题目描述。

Output

你的程序只要输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

Hint

80%的数据中:N≤200,M≤1 000。 
100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

Source

NOI 2006 网络流


看的 nodgd 的题解(http://oi.nks.edu.cn/showproblem?problem_id=1522)才会的。

以下引用 nodgd 的原文

想必你一定想过这样建图:每个中转站拆成两个点,每个客户是一条边........但是总是行不通。
实际上这道题建图确实比较神奇比较机智比较巧妙。

我们把(1)源点连边向每个中转站,容量为修建的费用;(2)中转站连边向相应的客户,容量无穷大;(3)客户连边向汇点,容量为这个客户制造的获利。跑完最大流之后用所有客户的获利总和减去最大流即可。
为什么这样建图是正确的?我们来考虑一下这个图的某个最小割:
1.最小割边集合一定不含(2)类边,因为这样就不满足最小性了;
2.割边集合中的所有(1)类边,表示需要修建的中转站;
3.割边集合中的所有(3)类边,表示被放弃的客户。
于是这个割当然越小越好!!那当然是最小割,也就是最大流。
于是 最终答案==获得的利润-修建的费用
             ==所有客户的获利总和-(需要放弃的客户+修建的费用)
             ==所有客户的获利总和-最大流
剩下的就是SAP裸跑一次就可以了。


























#include<cstdio>
using namespace std;
#define inf 2000000000
#define maxet 350000
#define maxn 5009
#define maxm 50009
#define maxv (1+maxn+maxm+1)
int end[maxet], len[maxet], next[maxet], last[maxv], opp[maxet];
int et=0;
int vt, dis[maxv], vd[maxv];
int Min(int a, int b)
{
	return a<b?a:b;
}
int dfs(int u, int flow)
{
	int temp, v, delta, i, e;
	if(u==vt)return flow;
	delta=0;
	for(i=last[u]; i; i=next[i])
	{
		e=end[i];
		if(len[i]>0&&dis[u]==dis[e]+1)
		{
			temp=dfs(e, Min(flow-delta, len[i]));
			len[i]-=temp;
			len[opp[i]]+=temp;
			delta+=temp;
			if(delta==flow||dis[1]>=vt)return delta;
		}
	}
	if(dis[1]>=vt)return delta;
	vd[dis[u]]--;
	if(vd[dis[u]]==0)dis[1]=vt;
	dis[u]++;
	vd[dis[u]]++;
	return delta;
}
void adde(int s, int e, int c)
{
	et++;
	end[et]=e;
	len[et]=c;
	next[et]=last[s];
	last[s]=et;
}
void addde(int s, int e, int c)
{
	adde(s, e, c);
	opp[et]=et+1;
	adde(e, s, 0);
	opp[et]=et-1;
}
int main()
{
	int maxflow=0;
	int ct=0;
	int a, b, c;
	int i;
	int n, m, t;
	scanf("%d%d", &n, &m);
	vt=1+n+m+1;
	for(i=1; i<=n; i++)
	{
		scanf("%d", &t);
		addde(1, i+1, t);
	}
	for(i=1; i<=m; i++)
	{
		scanf("%d%d%d", &a, &b, &c);
		addde(1+a, 1+n+i, inf);
		addde(1+b, 1+n+i, inf);
		addde(1+n+i, vt, c);
		ct+=c;
	}
	while(dis[1]<vt)
	{
		maxflow+=dfs(1, inf);
	}
	printf("%d", ct-maxflow);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值