小机房的树
题目描述 Description
小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上。有一天,他们想爬到一个节点上去搞基,但是作为两只虫子,他们不想花费太多精力。已知从某个节点爬到其父亲节点要花费 c 的能量(从父亲节点爬到此节点也相同),他们想找出一条花费精力最短的路,以使得搞基的时候精力旺盛,他们找到你要你设计一个程序来找到这条路,要求你告诉他们最少需要花费多少精力
输入描述 Input Description
第一行一个n,接下来n-1行每一行有三个整数u,v, c 。表示节点 u 爬到节点 v 需要花费 c 的精力。
第n+1行有一个整数m表示有m次询问。接下来m行每一行有两个整数 u ,v 表示两只虫子所在的节点
输出描述 Output Description
一共有m行,每一行一个整数,表示对于该次询问所得出的最短距离。
样例输入 Sample Input
3
1 0 1
2 0 1
3
1 0
2 0
1 2
样例输出 Sample Output
1
1
2
数据范围及提示 Data Size & Hint
1<=n<=50000, 1<=m<=75000, 0<=c<=1000
这个题和奶牛串门类似,但是数据大一些,要用存边。
然后我又犯了一个错误导致调了半小时的错,len变化和x变化写颠倒了。#include<cstdio>
#include<vector>
#include<cmath>
using namespace std;
#define maxn 50009
int dep[maxn], fa[maxn][20], len[maxn][20];
bool wasfa[maxn];
vector<pair<int, int> >edge[maxn];
void dfs(int cur)
{
int s, i, son;
dep[cur]=dep[fa[cur][0]]+1;
s=ceil(log(dep[cur])/log(2));
for(i=1; i<=s; i++)
{
fa[cur][i]=fa[fa[cur][i-1]][i-1];
len[cur][i]=len[cur][i-1]+len[fa[cur][i-1]][i-1];
}
wasfa[cur]=true;
vector<pair<int, int> >::iterator it;
for(it=edge[cur].begin(); it!=edge[cur].end(); it++)
{
son=it->first;
if(!wasfa[son])
{
fa[son][0]=cur;
len[son][0]=it->second;
dfs(son);
}
}
}
int lca(int x, int y)
{
int k, s, i, ans=0;
if(dep[x]<dep[y]) swap(x, y);
k=dep[x]-dep[y];
s=ceil(log(dep[x])/log(2));
for(i=0; i<=s; i++)
{
if(k&(1<<i))
{
ans+=len[x][i]; //曾经上下这两句我写颠倒了 错了
x=fa[x][i];
}
}
if(x==y) return ans;
s=ceil(log(dep[x])/log(2));
for(i=s; i>=0; i--)
{
if(fa[x][i]!=fa[y][i])
{
ans+=len[x][i];
x=fa[x][i];
ans+=len[y][i];
y=fa[y][i];
}
}
return ans+len[x][0]+len[y][0];
}
int main()
{
int n, u, v, c, m, i;
scanf("%d", &n);
for(i=1; i<n; i++)
{
scanf("%d%d%d", &u, &v, &c);
edge[u].push_back(make_pair<int, int>(v, c));
edge[v].push_back(make_pair<int, int>(u, c));
}
scanf("%d", &m);
dfs(1);
for(i=1; i<=m; i++)
{
scanf("%d%d", &u, &v);
printf("%d\n", lca(u, v));
}
return 0;
}