自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 A workload-aware flash translation layer enhancing performance and lifespan of TLC/SLC dual-mode

与传统NAND闪存类似,TLC闪存被用作二级存储,以满足快速增长的存储容量需求。 TLC闪存具有抗震、高密度、低成本、非易失性和低访问延迟等特性。然而,与SLC闪存相比,TLC 闪存也有一些缺点,例如写入干扰、性能低下和周期非常有限。 在本文中,提出了一种用TLC/SLC 双模式闪存的工作负载感知闪存转换层,称为 Balloon-FTL,以提高系统的性能和使用寿命。

2024-12-17 17:52:41 1047

原创 Performance and reliability optimization for high-density flash-based hybrid SSDs

融合大容量闪存和高性能闪存的混合SSD已经成为现有SSD架构的主流。然而,论文的实证研究表明,现有混合架构中的组合设计并不完善。为了解决这些问题,本文提出了HyFlex,包括三种新颖的方案。首先,基于速度的 I/O 调度 (VIS) 方案是一种新颖的数据放置方案,可以避免性能损坏。其次,垃圾收集感知容量调整(GCT)方案是一种新颖的闪存模式管理方案,可以避免突发性能下降。第三,读干扰感知数据迁移(DAM)方案是一种新颖的数据迁移方案,用于减轻QLC区域的读干扰。

2024-11-20 21:50:51 1901

原创 Data Placement Using a Classifier for SLC/QLC Hybrid SSDs

在由SLC和QLC组成的混合SSD中,有效利用有限的SLC缓存空间至关重要。在本文中,我出了一种实用的数据放置方案,该方案使用轻量级机器学习模型确定写入请求的放置位置。它利用有关 I/O 工作负载特征和 SSD 状态的信息,来高精度识别不需要存储在 SLC 缓存中的冷数据。通过策略性地绕过冷数据的 SLC 缓存,该方案显着减少了 SLC 和 QLC 区域之间不必要的数据移动,从而提高了 SSD 的整体效率。

2024-11-18 16:48:02 1761

原创 Page Type-Aware Full-Sequence Program Scheduling via Reinforcement Learning in HighDensity SSDs

全序列编程可以同时编程多个位,一次性完成多页写入,从而增强高密度3D固态硬盘的写入性能。本文提出了一种适用于 3D QLC SSD 的 FSP 调度方法,以进一步提高其读取响应能力。考虑到 QLC SSD 中的每个 FSP 操作跨越四种不同类型的 QLC 页面,具有不同的读取延迟,论文引入将四页应用程序数据与合适的 QLC 页面匹配,并使用 FSP 的一次性程序将它们刷新在一起。为此,文中采用强化学习根据历史访问频率和关联请求大小将缓存的应用程序数据分为四类。

2024-11-11 20:16:52 848

原创 RiF: Improving Read Performance of Modern SSDs Using an On-Die Early-Retry Engine

在采用高密度 3D NAND 闪存的当代 SSD 中,频繁调用读重试过程对充分利用闪存通道的最大 I/O 带宽构成了重大挑战。在本文中,提出了一种新颖的读重试优化方案,Retry-in-Flash (RiF),它主动最大限度地减少传统读重试过程中浪费的时间。与专注于识别感测页的最佳读取参考电压的现有读取重试解决方案不同,RiF方案专注于及早确定感测数据是否需要读取重试。为了尽早了解是否需要读取重试,我们提出了一种支持 RiF 的闪存芯片,ODEAR)引擎。

2024-11-07 15:24:55 1065

原创 The Design and Implementation of a Capacity-Variant Storage System

论文基于闪存的固态硬盘 (SSD) 设计和实现容量可变存储系统 (CVSS) 。 CVSS 旨在通过允许存储容量随着时间的推移适度减少,从而防止出现故障缓慢症状(fail-slow symptoms),从而在 SSD 的整个生命周期内保持高性能。 CVSS 由三个关键组件组成:(1) CV-SSD,一种可以最大限度地减少写入放大并随着时间的推移适度减少其输出容量的 SSD; (2) CV-FS,弹性逻辑分区的日志结构文件系统; (3)CV-manager,一个用户级程序,根据存储系统的状态编排系统组件。

2024-11-01 16:53:27 708

转载 Midas Touch: Invalid-Data Assisted Reliability and Performance Boost for 3D High-Density Flash

本文提出了无效数据辅助策略(invalid-data assisted strategies)以提高基于 3D QLC NAND闪存系统中有效数据的性能和可靠性。这一策略主要包括三个部分:重新编程(re-programming,RP)方案、不编程(not-programming,NP)方案和自适应数据分配器(adaptive data allocation,ADA)。

2024-10-31 20:28:36 127

原创 GuardedErase: Extending SSD Lifetimes by Protecting Weak Wordlines

3D NAND 闪存通过垂直堆叠字线 (WL) 来实现闪存容量的持续增长。然而,随着闪存块中WL数量的增加,3D NAND闪存在不同WL之间表现出很强的工艺差异性,这使得SSD难以充分利用闪存块的最大耐用性,从而缩短SSD的寿命。论文提出了一种新的系统级块擦除方案,称为 GuardedErase,用于延长 3D 闪存块的寿命。

2024-10-29 20:49:02 882

原创 Self-Adapting Channel Allocation for Multiple Tenants Sharing SSD Devices

论文为共享一个 SSD 的多个租户(multiple tenants)提出了一种自适应通道分配机制,名为SSDKeeper。 SSDKeeper 采用机器学习辅助算法,充分利用 SSD 并行性,同时提供性能隔离。通过收集多租户访问模式,SSDKeeper 使用训练有素的模型预测多个租户的最佳通道分配策略。此外,为了进一步均匀地消耗不同通道中的块,SSDKeeper配备了一种新颖的通道交换方案来延长SSD的使用寿命。

2024-10-16 22:27:20 920

原创 NCache: A Machine-Learning Cache Management Scheme for Computational SSDs

论文提出一种名为 NCache 的基于机器学习(Machine Learning, ML)的缓存方案,以优化命中率和 SSD 性能。在NCache 中,本文构建了一种基于决策树的机器学习模型,来预测缓存中逐出之前的数据是否会被重新访问。缓存替换方案优先驱逐缓存中不会被访问的数据,保留可能被重复访问的有效数据。实施流水线方案来加速 ML 模型,减轻 NCache 的时间成本。此外,论文还使用双链表增强了数据寻址和缓存替换过程。

2024-10-15 22:37:00 973

原创 Channel Parameter and Read Reference Voltages Estimation in 3-D NAND Flash Memory Using Unsupervised

本文提出了两种无监督学习算法来估计channel参数,来处理由于PE的干扰,数据保留和读次数,导致读参考电压发生的偏移。此外,为了解决由于channel估计算法引起的较长读取延迟,本文进一步提出了一种低延迟检测算法,该算法首先检测当前channel是否需要更新。如果需要更新,该算法仅在系统空闲时间内定期估计信道参数,从而实现更高效和简化的过程。

2024-10-13 18:35:37 1832

原创 ReveNAND: A fast-drift-aware resilient 3D NAND flash design

本文介绍了一种elastic read reference(VRef)scheme(ERR),用于减少 ReveNAND(快速漂移感知 3D NAND 设计)中的此类错误

2024-09-25 23:18:52 1095

原创 Reinforcement Learning-Based SLC Cache Technique for Enhancing SSD Write

由于 YCSB-A 中的大部分写入请求都较大,而且大部分数据都是冷数据,因此基于 RL 方案减少使用 SLC 高速缓存。通过观察工作负载模式和混合固态硬盘的内部状态,确定最佳的 SLC 缓存参数,最大限度地提高混合固态硬盘的效率。Effect of Agent Pre-training:就结果而言,如果将一个系统中预先训练好的代理应用于其他系统,它就能在短时间内适应新的环境。实验结果表明,与之前的技术相比,拟议技术的写入吞吐量和写入放大系数平均分别提高了 77.6% 和 20.3%。

2024-09-25 23:04:39 956

原创 Reinforcement Learning-Assisted Garbage Collection to Mitigate Long-Tail Latency in SSD

本文主要针对垃圾回收导致的long-tail延迟问题,设计一种强化学习协助垃圾回收来减缓long-tail延迟

2024-09-25 22:52:24 940

原创 Reinforcement Learning/Q-Value Prediction for Reinforcement Learning Assisted Garbage Collection to

本文在Reinforcement Learning-Assisted Garbage Collection to Mitigate Long-Tail Latency in SSD论文基础上进一步优化Reinforcement Learning-Assisted Garbage Collection策略,其中同样使用Q-learning算法(policy evaluation同样是RM算法,policy improvement为ε-greedy),但将Q-table改为Q-table cache。

2024-09-25 22:15:19 886

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除