一、冒泡排序
算法思想:遍历待排序的数组,每次遍历比较相邻的两个元素,如果他们的排列顺序错误就交换他们的位置,经过一趟排序后,最大的元素会浮置数组的末端。重复操作,直到排序完成。
示例演示:
待排序数组:4,3,7,6,9
第一趟:9,7,3,4,6
第二趟:9,3,4,6,7
第三趟:9,4,3,6,7
第四趟:9,6,3,4,7
第五趟:9,7,3,4,6
第六趟:9,7,4,3,6
第七趟:9,7,6,3,4
第八趟:9,7,6,4,3
算法实现:
/**
* 冒泡法排序<br/>
* <li>比较相邻的元素。如果第一个比第二个大,就交换他们两个。</li>
* <li>对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。</li>
* <li>针对所有的元素重复以上的步骤,除了最后一个。</li>
* <li>持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。</li>
*
* @param numbers
* 需要排序的整型数组
*/
public static void bubbleSort(int[] numbers) {
int temp; // 记录临时中间值
int size = numbers.length; // 数组大小
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (numbers[i] < numbers[j]) { // 交换两数的位置
temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
}
}
}
}
算法时间复杂度:O(n2) 外层循环需要比较n-1次,内层循环需要比较n次。
二、选择排序
算法思想:重待排序的数组中选择一个最小的元素,将它与数组的第一个位置的元素交换位置。然后从剩下的元素中选择一个最小的元素,将它与第二个位置的元素交换位置,如果最小元素就是该位置的元素,就将它和自身交换位置,依次类推,直到排序完成。
示例演示:
待排序数组:4,3,7,6,9
第一趟:3,4,7,6,9
第二趟:3,4,7,6,9
第三趟:3,4,6,7,9
第四趟:3,4,6,7,9
第五趟:3,4,6,7,9
算法实现:
1 /**
* 选择排序<br/>
* <li>在未排序序列中找到最小元素,存放到排序序列的起始位置</li>
* <li>再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。</li>
* <li>以此类推,直到所有元素均排序完毕。</li>
*
* @param numbers
*/
public static void selectSort(int[] numbers) {
int size = numbers.length, temp;
for (int i = 0; i < size; i++) {
int k = i;
for (int j = size - 1; j >i; j--) {
if (numbers[j] < numbers[k]) k = j;
}
temp = numbers[i];
numbers[i] = numbers[k];
numbers[k] = temp;
}
}
时间复杂度:O(n2) 需要n2 /2次比较和n次交换
三、插入排序
算法思想:从数组的第二个元素开始遍历,将该元素与前面的元素比较,如果该元素比前面的元素小,将该元素保存进临时变量中,依次将前面的元素后移,然后将该元素插入到合适的位置。每次排序完成后,索引左边的元素一定是有序的,但是还可以移动。对于倒置越少的数组,该算法的排序效率越高。
示例演示:
待排序数组:4,3,7,6,9
第一趟:3,4,7,6,9
第二趟:3,4,7,6,9
第三趟:3,4,6,7,9
第四趟:3,4,6,7,9
算法实现:
代码 /** * 插入排序<br/> * <ul> * <li>从第一个元素开始,该元素可以认为已经被排序</li> * <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li> * <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li> * <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li> * <li>将新元素插入到该位置中</li> * <li>重复步骤2</li> * </ul> * * @param numbers */ public static void insertSort(int[] numbers) { int size = numbers.length, temp, j; for(int i=1; i<size; i++) { temp = numbers[i]; for(j = i; j > 0 && temp < numbers[j-1]; j--) numbers[j] = numbers[j-1]; numbers[j] = temp; } }
时间复杂度:O(n2) 最坏情况下n2 /2次比较,n2 /2交换 最好情况N-1次比较,0次交换