区间奇偶数操作

来源:CACC-T3

题意:
给定一个长度为 N N N 的数组,每次可以对数组进行以下操作:

对区间 [ s , t ] [s, t] [s,t] 内所有的奇数加上某个数,

对区间 [ s , t ] [s, t] [s,t] 内所有的偶数加上某个数,

查询区间 [ s , t ] [s, t] [s,t] 内所有数的总和。

相较于模板题目加入了对于区间内的奇数或偶数进行操作,考虑维护下面的信息:
Info:奇数个数、偶数个数、总和
Tag:奇数加什么、偶数加什么

这题主要考虑如何维护奇数和偶数添加的顺序,也就是说如何将懒标记进行合理的合并。

我们规定一个懒标记顺序:比如说我们先加偶数,再加奇数。那么当一个节点从他的父节点先接收到奇数 -3 的信息,然后接收到偶数 +20 的信息,那么对我们来说其实就等价于偶数 +20 ,然后奇数 +17 。于是将多次懒标记上的操作打包成一次操作,后续用于传递给子节点。

主要就是考虑先前两个懒标记上的奇偶性,是否引起了被加数的奇偶性发生改变,从而判断懒标记应该怎么合并。

时间复杂度: O ( ( n + m ) l o g n ) O((n+m)logn) O((n+m)logn)

#include <bits/stdc++.h>

using i64 = long long;

template<class Info, class Tag>
struct LazySegmentTree {
    int n;
    std::vector<Info> info;
    std::vector<Tag> tag;
    LazySegmentTree() : n(0) {}
    LazySegmentTree(int n_, Info v_ = Info()) {
        init(n_, v_);
    }
    template<class T>
    LazySegmentTree(std::vector<T> init_) {
        init(init_);
    }
    void init(int n_, Info v_ = Info()) {
        init(std::vector(n_, v_));
    }
    template<class T>
    void init(std::vector<T> init_) {
        n = init_.size();
        info.assign(4 << std::__lg(n), Info());
        tag.assign(4 << std::__lg(n), Tag());
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = init_[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = info[2 * p] + info[2 * p + 1];
    }
    void apply(int p, const Tag &v) {
        info[p].apply(v);
        tag[p].apply(v);
    }
    void push(int p) {
        apply(2 * p, tag[p]);
        apply(2 * p + 1, tag[p]);
        tag[p] = Tag();
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        push(p);
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        push(p);
        return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
    void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
        if (l >= y || r <= x) {
            return;
        }
        if (l >= x && r <= y) {
            apply(p, v);
            return;
        }
        int m = (l + r) / 2;
        push(p);
        rangeApply(2 * p, l, m, x, y, v);
        rangeApply(2 * p + 1, m, r, x, y, v);
        pull(p);
    }
    void rangeApply(int l, int r, const Tag &v) {
        return rangeApply(1, 0, n, l, r, v);
    }
};
 
struct Tag {
    i64 odd = 0;
    i64 even = 0;
    void apply(const Tag& t) {
        if (odd % 2 == 0) {
            odd += t.odd;
        } else {
            odd += t.even;
        }

        if (even % 2 == 0) {
            even += t.even;
        } else {
            even += t.odd;
        }
    }
};
 
struct Info {
    int oddNum = 0;
    int evenNum = 0;
    i64 sum = 0;
    void apply(const Tag& t) {
        int newodd = 0, neweven = 0;
        if (t.even) {
            sum += 1LL * evenNum * t.even;
            if (t.even % 2) {
                newodd += evenNum;
            } else {
                neweven += evenNum;
            }
        } else {
            neweven += evenNum;
        }

        if (t.odd) {
            sum += 1LL * oddNum * t.odd;
            if (t.odd % 2) {
                neweven += oddNum;
            } else {
                newodd += oddNum;
            }
        } else {
            newodd += oddNum;
        }
        oddNum = newodd;
        evenNum = neweven;
    }
};
 
Info operator+(Info a, Info b) {
    Info c;
    c.oddNum = a.oddNum + b.oddNum;
    c.evenNum = a.evenNum + b.evenNum;
    c.sum = a.sum + b.sum;
    return c;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int n, m;
    std::cin >> n >> m;

    std::vector<Info> info(n);
    for (int i = 0; i < n; i++) {
        info[i] = {0, 1, 0LL};
    }

    LazySegmentTree<Info, Tag> seg(info);
    for (int i = 0; i < m; i++) {
        int f;
        std::cin >> f;

        if (f == 1) {
            int s, t, o, y;
            std::cin >> s >> t >> o >> y;
            s--;
            seg.rangeApply(s, t, {(o == 1) * y, (o == 0) * y});
        } else {
            int s, t;
            std::cin >> s >> t;
            s--;

            std::cout << seg.rangeQuery(s, t).sum << "\n";
        }
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值