第二周 【项目三】体验复杂度(2)汉诺塔

本文主要探讨了汉诺塔问题,通过实际操作和分析,揭示了问题背后的递归性和复杂度。通过解决汉诺塔,读者可以深入理解递归算法和问题解决策略。
摘要由CSDN通过智能技术生成
/* 
 * Copyright(c) 2015,烟台大学计控学院 
 * All rights reserved. 
 * 文件名称 :CatMaster.cpp 
 * 作    者 :朱绍懿 
 * 完成时间 :2015年 9月11日 
 * 版 本 号 :v1.0 
 * 
 * 问题描述 : 有一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。 用递归算法求解汉诺塔问题,其复杂度可以求得为O(2^n),是指数级的算法。请到课程主页下载程序运行一下,体验盘子数discCount为4、20、24时在时间耗费上的差异,你能忍受多大的discCount。 
 * 输入描述 : 需要移动的盘子数。
 * 程序输出 : 盘子的移动次数。 
 */  
#include <stdio.h>
#define discCount 4
long move(int, char, char,char);
int main()
{
    long count;
    count=move(discCount,'A','B','C');
    printf("%d个盘子需要移动%ld次\n", discCount, count);
    return 0;
}
long move(int n, char A, char B,char C)
{
    long c1,c2;
    if(n==1)
        return 1;
    else
    {
        c1=move(n-1,A,C,B);
        c2=move(n-1,B,A,C);
        return c1+c2+1;
    }
}



<img src="https://img-blog.csdn.net/20150921172255438?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" /><img src="https://img-blog.csdn.net/20150921172304476?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" /><img src="https://img-blog.csdn.net/20150921172315533?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值