Python基础入门:从0完成一个宝可梦数据分析实战-Task4-阿里云天池

本文通过一个宝可梦数据分析实战,介绍了Python数据分析的流程,包括数据集下载、预处理、可视化和相关性分析,旨在选择性价比高的宝可梦。重点探讨了数据的缺失值处理和相关性,并提供了相关结论。
摘要由CSDN通过智能技术生成

Python基础入门:从0完成一个宝可梦数据分析实战-Task4-阿里云天池

〇、整体的学习感受

本篇数据分析实战的文案写得十分接地气,以一个大家都耳熟能详的卡通游戏ID作为范本素材,并且将数据分析的流程、目的和方法都巧妙地和游戏背景结合,但是,本人可能对宝可梦不是那么了解,所以看起来还是有点吃力。。。哈哈

一、具体的学习内容

0、研究背景

数据时代的到来刷新了人们探索未知的方式,从基础能源建设到航天航空工程。在关都地区真新镇大木研究所一直孜孜不倦对精灵宝可梦进行研究的大木博士也不例外,在剧中我们就常常可以看到大木博士制作的精灵图鉴一直在给探险家们提供宝可梦的简单分析,包括宝可梦的身高,体重,特性等等。但是作为从小就向往前往大木博士研究所成为宝可梦联盟最强训练师/宝可梦研究大师的我,仅仅是分析单个宝可梦的数据远远满足不了我的需求。

与其他探险家旅游挑战道馆的方式不同,我决定通过使用数据分析的方式来帮助我更好的了解宝可梦这种神奇的生物,然后再选择最经济实惠,简单好抓的宝可梦来挑战联盟。通过使用搜索引擎,我找到了一份包含着从第一代到第七代共801只宝可梦的数据集。

1、研究目的

根据以上的研究背景,提炼出我们通过数据分析想要达到的目的,即:选择最经济实惠,简单好抓的宝可梦来挑战联盟

2、数据集的下载

!wget -O pokemon_data.csv https://pai-public-data.oss-cn-beijing.aliyuncs.com/pokemon/pokemon.csv

3、前期准备工作

然后我们import我们最常用的三大件:Pandas, Seaborn, Matplotlib, 并且读取数据。

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

4、数据初探

df.head() # 读取表格数据的前5行

首先我们观察一下数据的尺寸,可以通过df.shape这个来实现。当然**df.info()**能够给我们更加详细的每个列的信息。这里我们通过这个方式,可以发现这个数据集一共收录了801行,41列的数据。说明一共有801只宝可梦,每只宝可梦我们有41个特征来描述它们。

5、缺失值的处理

然后就迎来了我们的第一个问题:这么多特征,是否会有数据缺失呢?毕竟有些宝可梦比较神秘感,就连大木博士都不一定知道。这里我们可以通过如下代码来观察每个特征的缺失情况:

# 计算出每个特征有多少百分比是缺失的
percent_missing = df.isnull().sum() * 100 / 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值