Python机器学习笔记(二十四 模型评估与改进-评估指标与评分)

我们使用精度(正确分类的样本所占的比例)来评估分类性能,使用R2来评估回归性能。但是,总结监督模型在给定数据集上的表现有多种方法,这两个指标只是其中两种。在实践中,这些评估指标可能不适用于你的应用。在选择模型与调参时,选择正确的指标是很重要的。

1. 牢记最终目标

在选择指标时,应该始终牢记机器学习应用的最终目标。在实践中,我们通常不仅对精确的预测感兴趣,还希望将这些预测结果用于更大的决策过程。在选择机器学习指标之前,你应该考虑应用的高级目标,这通常被称为商业指标(business metric)。对于一个机器学习应用,选择特定算法的结果被称为商业影响(business impact)。 高级目标可能是避免交通事故或者减少入院人数,也可能是吸引更多的网站用户或者让用户在你的商店中花

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FreedomLeo1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值