keep on coding8.26-2

2
二分图
【题意描述】一个无向图被称为二分图当且仅当这个图中没有长度为奇数的环。给你一个包含 n 个点的图,这个图中一开始没有边。要求支持两种操作:在这个图中加入一条边。删除最后加入的边。每个操作之后需要判断这个图是否是二分图,如果是输出“ YES”,否则输出“ NO【输入格式第一行包含两个整数 n m,表示点数和询问数。接下来 m 行每行包含一个询问,格式如下: 1 x y(表示加入一条连接 x y 的边) 2(表示删除最后加入的边) 【输出格式输出共 m 行,每行包含一个字符串“ YES”或者一个字符串“ NO【样例输入】 3 3 1 1 2 1 2 3 1 3 1 【样例输出】 YES YES NO 【数据规模与约定】对于 80%的数据, n<=100,m<=3000对于额外 15%的数据,没有第二种操作。对于 100%的数据,n<=10000,m<=1000000
本题的做法是伪并查集,即在find()时不要路径压缩,具体细节见代码。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=10010;
int n,m;
int cnt;
int fa[maxn],st[maxn*100][2],front[maxn],vis[maxn];
int find(int x){
	if(x==fa[x]) return x;
	else return find(fa[x]);
}
void link(int x,int y){
	x=find(x);y=find(y);
	if(x==y){
		st[++cnt][0]=-1;
		return;
	}
	fa[x]=y;
	st[++cnt][0]=x;
	st[cnt][1]=y;
}
void pop(){
	if(st[cnt][0]==-1){
		cnt--;
		return;
	}
	int x=st[cnt][0];
	int y=st[cnt][1];
	fa[x]=x;
	cnt--;
}
bool together(int x,int y){
	return find(x)==find(y);
}
int main(){
	scanf("%d%d",&n,&m);
	int i,j,k;
	for(i=1;i<=n*2;i++) fa[i]=i;
	int last=0;
	for(int kase=1;kase<=m;kase++){
		int op;
		scanf("%d",&op);
		if(op==1){
			int x,y;
			scanf("%d%d",&x,&y);
			front[kase]=last;
			if(vis[last]==1) vis[kase]=1;
			else if(together(x+n,y+n) || together(x,y)) vis[kase]=1;
			else{
				link(x,y+n);
				link(x+n,y);
			}
			last=kase;
			if(vis[last]) printf("NO\n");
			else printf("YES\n");
		}else{
			if(vis[last]==0){
				pop();pop();
			}
			last=front[last];
			if(vis[last]) printf("NO\n");
			else printf("YES\n");
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值