SCOI2014方伯伯运椰子 (分数规划+SPFA)

本文介绍了一个关于椰子园物流网络优化的问题,旨在通过调整网络中的道路容量来降低运输成本,确保物流网络在高运输量下的经济性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

四川的方伯伯为了致富,决定引进海南的椰子树。方伯伯的椰子园十分现代化,椰子园中有一套独特的交通系统。

现在用点来表示交通节点,边来表示道路。这样,方伯伯的椰子园就可以看作一个有 n + 2 个交通节点,m条边的有向无环图。n +1 号点为入口,n +2 号点为出口。每条道路都有 6 个参数,ui,vi,ai,bi,ci,di,分别表示,该道路从 ui 号点通向 vi 号点,将它的容量压缩一次要 ai 的花费,容量扩大一次要 bi 的花费,该条道路当前的运输容量上限为 ci,并且每单位运输量通过该道路要 di 的费用。

在这个交通网络中,只有一条道路与起点相连。因为弄坏了这条道路就会导致整个交通网络瘫痪,聪明的方伯伯决定绝不对这条道路进行调整,也就是说,现在除了这条道路之外,对其余道路都可以进行调整。

有两种调整方式:

选择一条道路,将其进行一次压缩,这条道路的容量会下降 1 单位。
选择一条道路,将其进行一次扩容,这条道路的容量会上升 1 单位。

一条道路可以被多次调整。

由于很久以前,方伯伯就请过一个工程师,对这个交通网络进行过一次大的优化调整。所以现在所有的道路都被完全的利用起来了,即每条道路的负荷都是满的(每条道路的流量等于其容量)。

但方伯伯一想到自己的海南椰子会大丰收,就十分担心巨大的运输量下,会导致过多的花费。因此,方伯伯决定至少进行一次调整,调整之后,必须要保持每条道路满负荷,且总交通量不会减少。

设调整后的总费用是 Y,调整之前的总费用是 X。现在方伯伯想知道,最优调整比率是多少,即假设他进行了 k 次调整,(X - Y)/k最大能是多少?

注:总费用 = 交通网络的运输花费 + 调整的花费
输入输出格式
输入格式:

第一行包含二个整数N,M接下来M行代表M条边,表示这个交通网络每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di接下来一行包含一条边,表示连接起点的边

输出格式:

一个浮点数,保留二位小数。表示答案,数据保证答案大于0

分析:
1.因为本题要求的是分数的最大值,所以要用到分数规划
2.因为与源点相连的只有一条边,所以这个图的流量是守恒的(总量不会变化)
3.那么压缩相当于退流,扩容相当于增广,增广相当于加了一条。
4.扩容1的费用为b+d,压缩1的费用为a-d
5.化一下给的式子:

xyk>mid

xykmid>0

yx+kmid<0

y-x即是扩容的费用加上压缩的费用。由于最后要除上操作总数k,因此对于相同的边操作多次是没有意义的。又因为存在mid的影响,所以每次加上mid再判断是否有负权环即可。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=5010;
const int maxm=3010;
const int INF=1e9;
int to[maxm*2],Next[maxm*2],w[maxm*2],Begin[maxn],e;
int n,m;
double dis[maxn];
void add(int x,int y,int z){
    to[++e]=y;
    Next[e]=Begin[x];
    Begin[x]=e;
    w[e]=z;
}
int inq[maxn],cnt[maxn];
int s,t;
bool SPFA(double add){
    memset(inq,0,sizeof(inq));
    memset(cnt,0,sizeof(cnt));
    for(int i=1;i<=n;i++) dis[i]=INF*1.0;
    queue<int>q;
    q.push(s);inq[s]=1;cnt[s]++;
    dis[s]=0;
    while(!q.empty()){
        int u=q.front();q.pop();
        for(int i=Begin[u];i;i=Next[i]){
            int v=to[i];
            if(cnt[v]>n) return true;
            double length=w[i]+add;
            if(dis[v]>dis[u]+length){
                dis[v]=dis[u]+length;
                if(!inq[v]) q.push(v),cnt[v]++;
            }
        }
    }
    return false;
}
int main(){
    scanf("%d%d",&n,&m);
    double L=0,R=0;
    s=n+1,t=n+2;
    n+=2;
    for(int i=1;i<=m;i++){
        int u,v,a,b,c,d;
        scanf("%d%d%d%d%d%d",&u,&v,&a,&b,&c,&d);
        if(c) add(v,u,a-d);
        add(u,v,b+d);
        if(a-d<0) R+=d-a;
    }
    double ans=0;
    while(R-L>=1e-3){
        double mid=(L+R)/2;
        if(SPFA(mid)){
            ans=mid;L=mid;
        }else R=mid;
    }
    printf("%.2f",ans);
    return 0;
}

^_^

### 关于 SCOI2009 WINDY 数的解法 #### 定义与问题描述 WINDY数是指对于任意两个相邻位置上的数字,它们之间的差至少为\(2\)。给定正整数区间\([L, R]\),计算该范围内有多少个WINDY数。 #### 动态规划法解析 为了高效解决这个问题,可以采用动态规划法来处理。定义状态`dp[i][j]`表示长度为`i`且最高位是`j`的WINDY数的数量[^3]。 - **初始化** 对于单个数字的情况(即只有一位),显然每一位都可以单独构成一个合法的WINDY数,因此有: ```cpp dp[1][d] = 1; // d ∈ {0, 1,...,9} ``` - **状态转移程** 当考虑多位数时,如果当前位选择了某个特定数值,则下一位的选择会受到限制——它必须满足与前一位相差不小于2的要求。具体来说就是当上一高位为`pre`时,当前位置可选范围取决于`pre`的具体取值: - 如果`pre >= 2`, 则可以选择`{0... pre-2}` - 否则只能从剩余的有效集合中选取 这样就可以通过遍历所有可能的状态来进行状态间的转换并累加结果。 - **边界条件处理** 特殊情况下需要注意的是,在实际应用过程中还需要考虑到给出区间的上下限约束。可以通过逐位比较的式判断是否越界,并据此调整有效状态空间大小。 ```cpp // 计算不超过num的最大windy数数量 int calc(int num){ int f[15], g[15]; memset(f, 0, sizeof(f)); string s = to_string(num); n = s.size(); for (char c : s) { a[++len] = c - '0'; } // 初始化f数组 for (int i=0;i<=9;++i)f[1][i]=1; // DP过程省略... return sum; } long long solve(long long L,long long R){ return calc(R)-calc(L-1); } ``` 此代码片段展示了如何利用预处理好的`dp`表快速查询指定范围内的WINDY数总量。其中`solve()`函数用于返回闭区间\[L,R\]内符合条件的总数;而辅助函数`calc()`负责根据传入参数构建相应的状态序列并最终得出答案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值