Description
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
Input
输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
Output
以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”。
分析:
1.考虑树上点分治,核心思想是把树上路径分为经过重心的和不经过重心的,再用经过重心的路径条数减去在同一颗子树中的情况。
2.重心用树形DP求。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=20010;
int to[maxn*2],Next[maxn*2],Begin[maxn],w[maxn*2],e;
int n;
int root;
int dp[maxn],sum;
int size[maxn];
int ans;
int del[maxn];
int d[5];
int gcd(int x,int y){
if(y==0) return x;
return gcd(y,x%y);
}
void add(int x,int y,int z){
to[++e]=y;
Next[e]=Begin[x];
Begin[x]=e;
w[e]=z;
}
void getroot(int u,int fa){
dp[u]=0;size[u]=1;
for(int i=Begin[u];i;i=Next[i]){
int v=to[i];
if(v==fa || del[v]) continue;
getroot(v,u);
size[u]+=size[v];
dp[u]=max(dp[u],size[v]);
}
dp[u]=max(dp[u],sum-size[u]);
if(dp[root]>dp[u]) root=u;
}
void getdist(int u,int W,int fa){
d[W]++;
for(int i=Begin[u];i;i=Next[i]){
int v=to[i];
if(del[v] || v==fa) continue;
getdist(v,(W+w[i])%3,u);
}
}
void calc(int u){
d[0]=d[1]=d[2]=0;
getdist(u,0,0);
ans+=d[2]*d[1]*2+d[0]*d[0];
del[u]=1;
for(int i=Begin[u];i;i=Next[i]){
int v=to[i];
if(del[v]) continue;
d[0]=d[1]=d[2]=0;
getdist(v,w[i],u);
ans-=d[2]*d[1]*2+d[0]*d[0];
sum=size[v];
root=0;
getroot(v,u);
calc(root);
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<n;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z%3);add(y,x,z%3);
}
dp[0]=sum=n;
getroot(1,0);
calc(root);
int g=gcd(ans,n*n);
printf("%d/%d",ans/g,n*n/g);
return 0;
}
^_^