[bzoj2152]聪明可可 点分治

Description

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

Input

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。

Output

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”。

分析:
1.考虑树上点分治,核心思想是把树上路径分为经过重心的和不经过重心的,再用经过重心的路径条数减去在同一颗子树中的情况。
2.重心用树形DP求。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=20010;
int to[maxn*2],Next[maxn*2],Begin[maxn],w[maxn*2],e;
int n;
int root;
int dp[maxn],sum;
int size[maxn];
int ans;
int del[maxn];
int d[5];
int gcd(int x,int y){
    if(y==0) return x;
    return gcd(y,x%y);
}
void add(int x,int y,int z){
    to[++e]=y;
    Next[e]=Begin[x];
    Begin[x]=e;
    w[e]=z;
}
void getroot(int u,int fa){
    dp[u]=0;size[u]=1;
    for(int i=Begin[u];i;i=Next[i]){
        int v=to[i];
        if(v==fa || del[v]) continue;
        getroot(v,u);
        size[u]+=size[v];
        dp[u]=max(dp[u],size[v]);
    }
    dp[u]=max(dp[u],sum-size[u]);
    if(dp[root]>dp[u]) root=u;
}
void getdist(int u,int W,int fa){
    d[W]++;
    for(int i=Begin[u];i;i=Next[i]){
        int v=to[i];
        if(del[v] || v==fa) continue;
        getdist(v,(W+w[i])%3,u);
    }
}
void calc(int u){
    d[0]=d[1]=d[2]=0;
    getdist(u,0,0);
    ans+=d[2]*d[1]*2+d[0]*d[0];
    del[u]=1;
    for(int i=Begin[u];i;i=Next[i]){
        int v=to[i];
        if(del[v]) continue;
        d[0]=d[1]=d[2]=0;
        getdist(v,w[i],u);
        ans-=d[2]*d[1]*2+d[0]*d[0];
        sum=size[v];
        root=0;
        getroot(v,u);
        calc(root);
    }
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<n;i++){
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z%3);add(y,x,z%3);
    }
    dp[0]=sum=n;
    getroot(1,0);
    calc(root);
    int g=gcd(ans,n*n);
    printf("%d/%d",ans/g,n*n/g);
    return 0;
}

^_^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值