题目大意:
首先我们已知一个数组Ai,这个数组有n个元素,另外有一个数组Bi,这个数组有2n个元素。Bi数组中的n个元素是Ai里面的。另外n个元素分别是,遍历Ai的每个元素e,若e是质数,我们把第e个质数(2,3,5,7,...开始数 数e个)放入Bi。若e不是质数,我们把它的最大除数因子(除了自身)放入Bi。现在Bi被打乱了,问怎么通过Bi还原Ai.
题解:
我们把这串数据b,输入到一个multiset当中(multiset即这个set允许有多个重复的元素),然后我们从大到小去遍历multiset,若当前数字为no。若no是可以分解的(非质数),那么我们可以把no 放进结果,同时我们把它的最大除数因子从multiset里面去掉,若no为质数,我们可以把它属于第几个质数放进结果,即 我们把ai放进结果。同时ai从multiset里面去掉。至于怎么获取质数和怎么获得最大除数因子,我们可以使用素数筛。因为这里找最大除数因子,所以复杂度会变成O(N sqrt(N))。但是,本题的数据范围还是允许的。这题比较有意思的地方是:怎么实现这个multiset,这里利用到了数组的下标操作,每个下标都相当于一个数,里面的元素表示这个数字有几个。这种结构适合于:我们需要从小到大或者从大到小遍历元素,同时又要对里面元素进行增删,但是因为开了数组,这种结构一般只用于数据范围只在(1e6)的数量级。
AC代码:
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN =2750131 +5;
pair<int,int> statistic[MAXN];
int disArray[MAXN];
#define MAXSIZE MAXN
int Mark[MAXN];
int prime[MAXN];
int primeCheck[MAXN];
//判断是否是一个素数 Mark 标记数组 index 素数个数
void Prime(){
//int index = 0;
int primeCount=1;
for(int i = 2;i < MAXSIZE;i++){
//已被标记
if(Mark[i] == 1){
int another=0;
for(int j=2;j<=sqrt(i);j++){
if(i%j==0){
another=i/j;
break;
}
}
statistic[i].first=another;
statistic[i].second=0;
continue;
}
else{
//否则得到一个素数
// prime[index++] = i;
primeCheck[i]=1;
//标记该素数的倍数为非素数
statistic[i].first=primeCount;
statistic[i].second=1;
primeCount++;
for(int j = i*i;j < MAXSIZE;j += i){
Mark[j] = 1;
}
}
}
//return index;
}
int32_t main(){
int n;
cin>>n;
memset(disArray,0,sizeof(disArray));
memset(Mark,0,sizeof(Mark));
memset(primeCheck,0,sizeof(primeCheck));
for(int i=0;i<2*n;i++){
int t;
cin>>t;
disArray[t]++;
}
Prime();
vector<int> res;
for(int i=MAXN-1;i>=2;i--){
assert(disArray[i]>=0);
while(disArray[i]>0){
disArray[i]--;
disArray[statistic[i].first]--;
if(statistic[i].second>0){
res.push_back(statistic[i].first);
}else{
res.push_back(i);
}
}
}
for(int i=0;i<(int)res.size();i++){
if(i)cout<<" ";
cout<<res[i];
}
cout<<endl;
}