hdu3452 最小割

23 篇文章 0 订阅
6 篇文章 0 订阅

最小割基础题 要想把叶子节点与根节点分开 其实就是把叶子节点跟一个汇点连接起来 边的权值为无穷

然后根节点为源点 到汇点跑最大流就行了


#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<stack>
#include<queue>
#include<cmath>
#include<stack>
#include<list>
#include<map>
#include<set>
typedef long long ll;
using namespace std;
const int MAXN=1005;//jiedian de zui da zhi
const int MAXM=800000;//bian de zui da zhi
const int INF=0x3f3f3f3f;
struct Node
{
    int from,to,next;
    int cap;
}edge[MAXM];
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];
void init()  //remember write it in main function
{
    tol=0;
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v,int w)
{
    edge[tol].from=u;
    edge[tol].to=v;
    edge[tol].cap=w;
    edge[tol].next=head[u];
    head[u]=tol++;
    edge[tol].from=v;
    edge[tol].to=u;
    edge[tol].cap=w;//wuxiangtu  this place change to w;
    edge[tol].next=head[v];
    head[v]=tol++;
}
void BFS(int start,int end)
{
    memset(dep,-1,sizeof(dep));
    memset(gap,0,sizeof(gap));
    gap[0]=1;
    int que[MAXN];
    int front,rear;
    front=rear=0;
    dep[end]=0;
    que[rear++]=end;
    while(front!=rear)
    {
        int u=que[front++];
        if(front==MAXN)front=0;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(dep[v]!=-1)continue;
            que[rear++]=v;
            if(rear==MAXN)rear=0;
            dep[v]=dep[u]+1;
            ++gap[dep[v]];
        }
    }
}
int SAP(int start,int end,int n) //n shi jiedian de zui da ge shu ,including source and sink
{
    int res=0;
    BFS(start,end);
    int cur[MAXN];
    int S[MAXN];
    int top=0;
    memcpy(cur,head,sizeof(head));
    int u=start;
    int i;
    while(dep[start]<n)
    {
        if(u==end)
        {
            int temp=INF;
            int inser;
            for(i=0;i<top;i++)
                if(temp>edge[S[i]].cap)
                {
                    temp=edge[S[i]].cap;
                    inser=i;
                }
            for(i=0;i<top;i++)
            {
                edge[S[i]].cap-=temp;
                edge[S[i]^1].cap+=temp;
            }
            res+=temp;
            top=inser;
            u=edge[S[top]].from;
        }
        if(u!=end&&gap[dep[u]-1]==0)
            break;
        for(i=cur[u];i!=-1;i=edge[i].next)
            if(edge[i].cap!=0&&dep[u]==dep[edge[i].to]+1)
                break;
        if(i!=-1)
        {
            cur[u]=i;
            S[top++]=i;
            u=edge[i].to;
        }
        else
        {
            int min=n;
            for(i=head[u];i!=-1;i=edge[i].next)
            {
                if(edge[i].cap==0)continue;
                if(min>dep[edge[i].to])
                {
                    min=dep[edge[i].to];
                    cur[u]=i;
                }
            }
            --gap[dep[u]];
            dep[u]=min+1;
            ++gap[dep[u]];
            if(u!=start)u=edge[S[--top]].from;
        }
    }
    return res;
}

//双向图
int source,sink;
int vis[MAXN];
int main()
{
    
    int i ,n ,r ;
    while(scanf("%d%d",&n,&r)!=EOF)
    {
        if(n==0&&r==0)break;
        init();
        memset(vis,0,sizeof vis);
        for(i=1;i<=n-1;i++)
        {
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            addedge(x, y, z);//双向图,我在addedge()函数里做了修改
            vis[x]++;//记录节点出现的次数 如果某个节点是叶子节点 那么它肯定只出现过一次 因为叶子节点永远只有一条边与之相连啊
            vis[y]++;
        }
        source=r;
        sink=n+1;
        for(i=1;i<=n;i++)
        {
            if(i!=r&&vis[i]==1)//如果是叶子节点 则向汇点连权值为无穷大的边
            {
                addedge(i, sink, INF);
            }
        }
        printf("%d\n",SAP(source,sink,n+1));
    }
    
    return 0;
   
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值