拯救废片就现在!6个ai扩图免费软件帮你一键修补图片

ai扩图要想不翻车的话,选对工具才是关键!

今天给大家分享我用过的6款ai扩图软件,顺带把使用教程也放在下面,感兴趣的不妨自己试试看~

还没用过ai扩图软件的朋友也别划走,可以试试这种很新的修图操作,你会发现新大陆!

拯救废片√

补全远景照片√

还原全身照√

恢复完整构图√

以上这些照片处理效果,都可以用ai扩图来实现!那就一起跟着往下看吧~

#1.AI绘图助手

一款全新的AI绘画软件,汇集了一众AI图像创作工具,包括AI绘画、AI扩图、AI写真、AI特效等等,而且提供免费额度,多个功能都可免费使用。

ai扩图教程超级简单:

①首页点击ai扩图功能→导入图片;

②选择扩图比例及扩展方式→等待扩图即可保存导出。

扩图后直接和原图背景融为一体,毫无违和感。

它的ai扩图功能除了可以完整补全图片的缺失部分,在扩图的同时还能够保证图片的质量和清晰度,即使是放大后,图片依旧清晰可见。

#2.MewXAI

国产一款非常出色的AI绘画小程序,它也有网页端可用。

主打的是AI绘画创作,融合了多种模型,例如:真绘、立体3D、3D人设、国风雅韵等等,很适合用来创作壁纸/头像。

除此之外,ai扩图也是它的一个亮点,登录上传图片即可按照等比例生成其他画面效果。

#3.Clipdrop

一个AI修图神器,除了图片修复功能之外,它还自带图片智能补全工具,其中的Uncrop功能可以实现扩图。

只需要将图片延续到其原始边界之外,AI即可以根据原始图像的视觉元素,自动扩展画面,且扩展的内容与原始图像几乎完美协调。

#4.Photoshop Generative Fill

在图片处理效果上,PS怎么可能会没有动作呢?去年就上线了一个名为“Generative Fill”的AI图像合成工具。

这个功能可以扩展图像的画布尺寸,然后利用ai技术生成与原始内容无缝融合的扩展部分。而且它的生成效果逼真、自然。

你还可以输入文字提示,它就根据你的要求生成特定的场景,ai扩图的效果完全自定义。

#5.Vmake AI

一个提供ai照片处理和视频编辑服务的平台,其中的图像拓展功能,可以做到在不牺牲图片质量的前提下,有效的放大图片的画面。

它的ai扩图功能可以精准到放大某一部分,例如你可以选择图片中的特定区域进行扩图放大,同时ai会自动补全和扩展图像,以确保画面的完整性和自然性。

除此之外,这个平台还有图片画质增强、去除图片背景等功能,这些图片处理效果都可以通过ai一键完成。

#6.Midjourney

这个ai绘画工具应该无人不知吧,除了生成图画之外,它提供“Zoom Out 1.5x”和“Zoom Out 2x”这两个放大功能,两个选项分别对应放大倍数。

它的扩图功能还不止于此,还提供了“Make Square”和“Custom Zoom”两个功能,分别对应的是方形拓展和自定义拓展图片。

比较实用的就是“Zoom out”这个功能,相当于把镜头拉远,图片捕捉到的范围更大,填充边角细节,扩图效果也比较自然。

以上免费的ai扩图软件就分享到这里。觉得内容不错的话,就点个赞支持一下啦~我会多多分享一些有趣优质的内容!!!

基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设计基于Python的天气预测和天气可视化项目(源码+文档说明)高分毕业设
### 使用Python实现AI展技术 在处理展时,通常会涉及到深度学习模型的应用。这些模型能够通过训练来理解并预测缺失像素的内容,从而完成高质量的展。 #### 基于卷积神经网络(CNN)的方法 一种常见的做法是利用基于CNN架构设计的生成对抗网络(GAN)[^1]。GAN由两个部分组成:一个是生成器(generator),负责创建新的数据样本;另一个是对抗判别器(discriminator),用于区分真实的数据与生成的数据之间的差异。对于展任务来说,可以采用U-Net结构作为生成器的基础框架[^2]。 ```python import torch from torchvision import transforms, datasets from torch.utils.data import DataLoader from models.unet import UNet # 自定义或第三方提供的UNet模型类 device = 'cuda' if torch.cuda.is_available() else 'cpu' transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor() ]) dataset = datasets.ImageFolder(root='./data', transform=transform) dataloader = DataLoader(dataset, batch_size=8) model = UNet().to(device) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(num_epochs): for i, (images, _) in enumerate(dataloader): images = images.to(device) outputs = model(images) loss = criterion(outputs, images) optimizer.zero_grad() loss.backward() optimizer.step() torch.save(model.state_dict(), './unet.pth') ``` 这段代码展示了如何构建一个简单的训练流程,其中包括加载图片、定义损失函数以及优化算法等内容。需要注意的是,在实际操作过程中还需要考虑更多细节问题,比如预处理步骤的选择、超参数调整等。 #### 展库推荐 为了更方便地实施上述过程,有几个流行的开源工具可以助加速开发: - **PyTorch**: 提供灵活高效的张量计算平台,并内置了许多实用的功能模块。 - **Keras with TensorFlow backend**: Keras是一个高级API接口,易于上手的同时也具备良好的性能表现。 - **OpenCV-Python**: Open Source Computer Vision Library(计算机视觉开放源码库),它不仅支持基本形变换还集成了大量先进的特征提取算子。 - **scikit-image**: 主要面向科学计算领域,提供了一系列针对二维信号处理的任务解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值