bzoj1176: [Balkan2007]Mokia

链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1176

题意:中文题。

分析:cdq分治第一题。还是仔细分析下细节吧。首先我们确定这题的类型:范围很大,询问很少。一般这样的题我们可以从询问的角度切入,然后找到好的复杂度情况的解决方法。有两类操作:1:单点修改。2:矩形区间询问。首先我们可以用容斥那样将矩形区间询问分成4块,两块+两块-(这种找询问的等价关系也是一种常用的解决问题的方法)。那么我们现在所有的操作都变成了(x,y),有的是统计(1,1)~(x,y)答案,有的是修改(x,y)的值,同时对于每个操作由于先后顺序有一个时间戳z。我们考虑对于一个询问(x,y,z)有哪些修改(x',y',z')会对它有影响,很明显要有影响是要x>=x',y>=y',z>=z'。那么我们先用排序确定好这些顺序,但是这3个值必定有优先级,我们设定的优先级为x>y>z。确定好顺序之后我们开始进行处理修改对询问的贡献,设当前我们处理的区间是时间戳在[l,r]区间的所有操作,mid=(l+r)>>1,从l到r处理,因为x的顺序一定从小到大的那么我们只要再用一个树状数组存下y的信息,那么显然当我们扫到一个修改并且时间戳<=mid时我们在y位置增加值a插入树状数组,当我们扫到一个询问并且时间戳>mid时只要查询小于等于y的所有修改的总和,这样的话我们就用排序,树状数组,mid将x>=x',y>=y',z>=z'这三个条件都满足了,然后在向下递归子区间[l,mid],[mid+1,r]。如果还有不懂的看代码。O(nlogn^2)。

代码:

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int N=5010;
const int MAX=1000000100;
const int mod=100000000;
const int MOD1=1000000007;
const int MOD2=1000000009;
const double EPS=0.00000001;
typedef long long ll;
const ll MOD=998244353;
const ll INF=10000000010;
typedef double db;
typedef unsigned long long ull;
struct node {
    int x,y,z,id,tab;
}ope[210000],aux[210000];
int s,w;
ll f[2000010],ans[10010];
int cmp(node a,node b) {
    if (a.x!=b.x) return a.x<b.x;
    else if (a.y!=b.y) return a.y<b.y;
        else return a.z<b.z;
}
void add(int a,ll b) {
    if (!a) return ;
    for (;a<=w;a+=a&(-a)) f[a]+=b;
}
ll getsum(int a) {
    ll ret=0;
    for (;a;a-=a&(-a)) ret+=f[a];
    return ret;
}
void cdq(int l,int r) {
    if (l==r) return ;
    int i,mid=(l+r)>>1,L,R;
    for (i=l;i<=r;i++)
    if (ope[i].z<=mid&&!ope[i].id) add(ope[i].y,ope[i].tab);
    else if (ope[i].z>mid&&ope[i].id) ans[ope[i].id]+=ope[i].tab*getsum(ope[i].y);
    for (i=l;i<=r;i++)
    if (ope[i].z<=mid&&!ope[i].id) add(ope[i].y,0-ope[i].tab);
    L=l;R=mid+1;
    for (i=l;i<=r;i++)
    if (ope[i].z<=mid) { aux[L]=ope[i];L++; }
    else { aux[R]=ope[i];R++; }
    for (i=l;i<=r;i++) ope[i]=aux[i];
    cdq(l,mid);cdq(mid+1,r);
}
int main()
{
    int a,i,k,q,x,x1,y1,x2,y2;
    scanf("%d%d", &s, &w);
    k=q=0;
    while (scanf("%d", &x)&&x!=3)
    if (x==1) {
        scanf("%d%d%d", &x1, &y1, &a);
        k++;ope[k].x=x1;ope[k].y=y1;
        ope[k].z=k;ope[k].id=0;ope[k].tab=a;
    } else {
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        q++;ans[q]+=((ll)(y2-y1+1)*(x2-x1+1))*s;
        k++;ope[k].z=k;ope[k].id=q;
        ope[k].x=x2;ope[k].y=y2;ope[k].tab=1;
        k++;ope[k].z=k;ope[k].id=q;
        ope[k].x=x1-1;ope[k].y=y1-1;ope[k].tab=1;
        k++;ope[k].z=k;ope[k].id=q;
        ope[k].x=x1-1;ope[k].y=y2;ope[k].tab=-1;
        k++;ope[k].z=k;ope[k].id=q;
        ope[k].x=x2;ope[k].y=y1-1;ope[k].tab=-1;
    }
    sort(ope+1,ope+k+1,cmp);
    memset(f,0,sizeof(f));
    cdq(1,k);
    for (i=1;i<=q;i++) printf("%lld\n", ans[i]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值