bzoj3295: [Cqoi2011]动态逆序对

链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3295

题意:中午题。

分析:本来打算练习cdq分治的,明天补吧。不过看到这题一眼就想用可持久化线段树,不过带修改的可持久化线段树开销有点大,变了一种方法卡了点空间才过。详见代码。O(nlogn*logn)。cdq写法补了,分析和代码在下面。

代码:

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int N=100010;
const int MAX=151;
const int mod=100000000;
const int MOD1=100000007;
const int MOD2=100000009;
const double EPS=0.00000001;
typedef long long ll;
const ll MOD=1000000000;
const ll INF=10000000010;
typedef double db;
typedef unsigned long long ull;
int siz,root[N],ls[100*N],rs[100*N],sum[100*N];
int n,a[30],b[30],v[N],w[N],f[N],pre[N],sub[N];
void add(int x,int y) {
    for (;x<=n;x+=x&(-x)) f[x]+=y;
}
int getsum(int x) {
    int ret=0;
    for (;x;x-=x&(-x)) ret+=f[x];
    return ret;
}
void updata(int l,int r,int x,int &y,int z,int w) {
    y=++siz;sum[y]=sum[x]+w;
    ls[y]=ls[x];rs[y]=rs[x];
    if (l==r) return ;
    int mid=(l+r)>>1;
    if (z<=mid) updata(l,mid,ls[x],ls[y],z,w);
    else updata(mid+1,r,rs[x],rs[y],z,w);
}
int query(int l,int r,int k) {
    int i,suml=0,sumr=0,mid=(l+r)>>1;
    if (l==r) {
        for (i=1;i<=a[0];i++) suml+=sum[a[i]];
        for (i=1;i<=b[0];i++) sumr+=sum[b[i]];
        return sumr-suml;
    }
    for (i=1;i<=a[0];i++) suml+=sum[ls[a[i]]];
    for (i=1;i<=b[0];i++) sumr+=sum[ls[b[i]]];
    if (k<=mid) {
        for (i=1;i<=a[0];i++) a[i]=ls[a[i]];
        for (i=1;i<=b[0];i++) b[i]=ls[b[i]];
        return query(l,mid,k);
    } else {
        for (i=1;i<=a[0];i++) a[i]=rs[a[i]];
        for (i=1;i<=b[0];i++) b[i]=rs[b[i]];
        return sumr-suml+query(mid+1,r,k);
    }
}
int main()
{
    int i,j,m,x;
    ll ans=0;
    scanf("%d%d", &n, &m);
    for (i=1;i<=n;i++){
        scanf("%d", &v[i]);w[v[i]]=i;
        add(v[i],1);pre[i]=i-getsum(v[i]);
        ans+=(ll)pre[i];sub[i]=v[i]-getsum(v[i]);
    }
    for (i=1;i<=m;i++) {
        printf("%lld\n", ans);
        scanf("%d", &x);
        ans-=(ll)(pre[w[x]]+sub[w[x]]);
        for (j=w[x];j<=n;j+=j&(-j)) updata(1,n,root[j],root[j],x,1);
        a[0]=b[0]=0;
        for (j=0;j;j-=j&(-j)) a[++a[0]]=root[j];
        for (j=w[x];j;j-=j&(-j)) b[++b[0]]=root[j];
        ans+=(ll)query(1,n,n);
        a[0]=b[0]=0;
        for (j=0;j;j-=j&(-j)) a[++a[0]]=root[j];
        for (j=w[x];j;j-=j&(-j)) b[++b[0]]=root[j];
        ans-=(ll)query(1,n,x);
        a[0]=b[0]=0;
        for (j=w[x];j;j-=j&(-j)) a[++a[0]]=root[j];
        for (j=n;j;j-=j&(-j)) b[++b[0]]=root[j];
        ans+=(ll)query(1,n,x);
    }
    return 0;
}

分析:其实我的可持久化线段树的做法和cdq分治做法是差不多的。举个数据说明会更好:{n=5,m=5,(5 4 3 2 1),(5 4 3 2 1)},首先我们先处理出没有删除元素是的逆序对个数和每个元素的贡献(向前匹配能形成pre[i]个逆序对和向后匹配能形成sub[i]个逆序对),那么初始逆序对tot=10,且pre={0,1,2,3,4},sub={4,3,2,1,0}。有了这些处理后我们开始处理删除操作:当删除5时我们将tot-=pre[1]+sub[1],这样是可以的,当删除4时我们也将tot-=pre[2]+sub[2]这里就出问题了,因为以a[2]=4为删除点去减掉逆序对个数时显然减pre[2]=1是和在删除a[1]=5时是重复了的,因为这时候(5,4)这对逆序对被删除了两遍,这个时候我们就不应该减了,那么我们得找个办法把减掉的加回来。加多少呢?设当前删除的数为x,它在数组中的位置为y,它被删除的时间戳为z,它影响的答案为id=z+1。那么对于当前三元组Q(x,y,z)我们对答案ans[z+1]应该加上{(x',y',z‘)|x’<=x&&y'>=y&&z>=z'}和{(x',y',z')|x'>=x&&y'<=y&&z>=z'}的个数,意义是在Q之前删除的点中,在y位置之前并且比x大的数和在y位置之后并且比x小的删除点的个数。这些就是我们要给ans[z+1]加上的。这里我们就可以利用z的单调性作为cdq中排序的那一维将x作为插入树状数组的那一维将y用来做分治。这样我们就能将答案给完整的统计出来啦。PS:cdq时间还是快啊,是可持久化线段树的1/4,并且空间也基本上就是几个数组的大小。O(mlogn^2)。

代码:

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int N=100010;
const int MAX=1000000100;
const int mod=100000000;
const int MOD1=1000000007;
const int MOD2=1000000009;
const double EPS=0.00000001;
typedef long long ll;
const ll MOD=998244353;
const ll INF=10000000010;
typedef double db;
typedef unsigned long long ull;
struct node {
    int x,y,z,id;
    node() {}
    node(int x,int y,int z,int id):x(x),y(y),z(z),id(id) {}
}ope[N],aux[N];
int n,f[N],v[N],w[N],pre[N],sub[N];
ll tot=0,ori[N],ans[N];
void add(int a,int b) {
    for (;a<=n;a+=a&(-a)) f[a]+=b;
}
int getsum(int a) {
    int ret=0;
    for (;a;a-=a&(-a)) ret+=f[a];
    return ret;
}
void cdq(int l,int r,int L,int R) {
    if (l>=r||L==R) return ;
    int i,mid=(L+R)>>1,a=l,b;
    for (i=l;i<=r;i++)
    if (ope[i].y>mid) add(ope[i].x,1);
    else ans[ope[i].id]+=(ll)getsum(ope[i].x);
    for (i=l;i<=r;i++)
    if (ope[i].y>mid) add(ope[i].x,-1);
    for (i=l;i<=r;i++)
    if (ope[i].y<=mid) add(ope[i].x,1);
    else ans[ope[i].id]+=(ll)(getsum(n)-getsum(ope[i].x));
    for (i=l;i<=r;i++)
    if (ope[i].y<=mid) add(ope[i].x,-1);
    for (i=l;i<=r;i++)
    if (ope[i].y<=mid) { aux[a]=ope[i];a++; }
    b=a-1;
    for (i=l;i<=r;i++)
    if (ope[i].y>mid) { aux[a]=ope[i];a++; }
    for (i=l;i<=r;i++) ope[i]=aux[i];
    cdq(l,b,L,mid);cdq(b+1,r,mid+1,R);
}
int main()
{
    int i,m,x;
    scanf("%d%d", &n, &m);
    for (i=1;i<=n;i++) {
        scanf("%d", &v[i]);w[v[i]]=i;
        add(v[i],1);x=getsum(v[i]);
        tot+=(ll)(i-x);pre[i]=i-x;sub[i]=v[i]-x;
    }
    for (i=1;i<=m;i++) {
        ori[i]=tot;scanf("%d", &x);
        tot-=(ll)(pre[w[x]]+sub[w[x]]);
        ope[i]=node(x,w[x],i,i+1);
    }
    memset(f,0,sizeof(f));
    cdq(1,m-1,1,n);
    for (i=1;i<=m;i++) {
        ans[i]+=ans[i-1];printf("%lld\n", ori[i]+ans[i]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值