题意:给定一棵以1为根的n个节点的树,然后m个询问,每次询问给定一个x。求在x为根的子树中的质心是谁。x的质心:在这颗子树中删掉它的质心,然后变成若干课小树,要求小树中的最大的size要<=x的size/2。
分析:我们直接预处理出每个点的质心,很容易想到x的质心一定在x和x的size最大的儿子的质心的路径上。为什么呢?画画图就知道了,不解释。然后我们只要dfs处理一遍就行啦。
代码:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int N=300010;
const int MAX=1000000100;
const int mod=100000000;
const int MOD1=1000000007;
const int MOD2=1000000009;
const double EPS=0.00000001;
typedef long long ll;
const ll MOD=998244353;
const int INF=1000000010;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned long long ull;
int fa[N],dp[N];
int tot,u[N],v[N],pre[N];
void add(int x,int y) {
v[tot]=y;pre[tot]=u[x];u[x]=tot++;
}
int siz[N],mxs[N];
void dfs(int x) {
int i,mx=0;
siz[x]=1;dp[x]=mxs[x]=x;
for (i=u[x];i!=-1;i=pre[i]) {
dfs(v[i]);
siz[x]+=siz[v[i]];
if (siz[v[i]]>mx) {
mx=siz[v[i]];mxs[x]=v[i];
}
}
dp[x]=dp[mxs[x]];
while (dp[x]!=x&&siz[x]-siz[dp[x]]>siz[x]/2) dp[x]=fa[dp[x]];
}
int main()
{
int i,n,q,x;
scanf("%d%d", &n, &q);
tot=0;memset(u,-1,sizeof(u));
for (i=2;i<=n;i++) {
scanf("%d", &fa[i]);add(fa[i],i);
}
dfs(1);
while (q--) {
scanf("%d", &x);
printf("%d\n", dp[x]);
}
return 0;
}