hdu5721Palace

链接:http://acm.hdu.edu.cn/showproblem.php?pid=5721

题意:给定n个点,设f[i]表示删掉第i个点的最近点对的距离,求sigma(1<=i<=n)f[i]。

分析:稍微想一下就知道n个点的最近点对的距离会被计算n-2次(不是删除这对点的情况),然后只要在计算两次删这对点中的点的情况就好了。PS:知道这是经典的分治求最近点对问题(不会的就自己去查资料学吧,挺简单的),比赛的时候好多人模板有错wa了,趁这次比到了这题把这题补上了,顺便在前排大神那拿个好的模板。

代码:

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int N=100010;
const int mod=100000000;
const int MOD1=1000000007;
const int MOD2=1000000009;
const double EPS=0.00000001;
typedef long long ll;
const ll MOD=1000000007;
const int MAX=1000000010;
const ll INF=1ll<<50;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned long long ull;
struct node {
    int x,y;
}p[N];
int A,B,d[N];
ll ans,mi,tmp;
bool cmpx(node a,node b) {
    return a.x<b.x;
}
bool cmpy(int a,int b) {
    return p[a].y<p[b].y;
}
ll dis(node a,node b) {
    return 1ll*(a.x-b.x)*(a.x-b.x)+1ll*(a.y-b.y)*(a.y-b.y);
}
void updata(int a,int b) {
    if ((tmp=dis(p[a],p[b]))<mi) { mi=tmp;A=a;B=b; }
}
ll closest(int l,int r) {
    if (l+1==r) { updata(l,r);return dis(p[l],p[r]); }
    if (l+2==r) {
        updata(l,r);updata(l,l+1);updata(l+1,r);
        return min(dis(p[l],p[l+1]),min(dis(p[l],p[l+2]),dis(p[l+1],p[l+2])));
    }
    int mid=(l+r)>>1;
    ll ret=min(closest(l,mid),closest(mid+1,r));
    int i,j,k=0;
    for (i=l;i<=r;i++)
    if (1ll*(p[mid].x-p[i].x)*(p[mid].x-p[i].x)<ret) d[++k]=i;
    sort(d+1,d+k+1,cmpy);
    for (i=1;i<=k;i++)
        for (j=i+1;j<=k;j++) {
            if (1ll*(p[d[i]].y-p[d[j]].y)*(p[d[i]].y-p[d[j]].y)>=ret) break ;
            updata(d[i],d[j]);ret=min(ret,dis(p[d[i]],p[d[j]]));
        }
    return ret;
}
int main()
{
    int a,b,i,n,t;
    scanf("%d", &t);
    while (t--) {
        scanf("%d", &n);
        for (i=1;i<=n;i++) scanf("%d%d", &p[i].x, &p[i].y);
        sort(p+1,p+n+1,cmpx);
        ans=0;mi=INF;
        closest(1,n);
        a=A;b=B;ans=mi*1ll*(n-2);
        for (i=a;i<n;i++) swap(p[i],p[i+1]);
        mi=INF;ans+=closest(1,n-1);
        for (i=n-1;i>=a;i--) swap(p[i],p[i+1]);
        for (i=b;i<n;i++) swap(p[i],p[i+1]);
        mi=INF;ans+=closest(1,n-1);
        printf("%I64d\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值