六度分隔理论
by EricCRC
原文地址:http://ericcrc.scinese.com/2007/08/13/%E5%85%AD%E5%BA%A6%E5%88%86%E9%9A%94%E7%90%86%E8%AE%BA/
我们总是惊叹于世界是如此的渺小,总是发现你和刚认识的另外一个人有共同的朋友……不禁问:世界到底有多大?我们和世界上其他人距离有多远?答案是——6。
这是一个有意思的答案。它是不是像生命、宇宙和万物的终极问题的答案是42一样的性质?还是一个正儿八经的科学结论?这个结论可信吗?
本文将向你介绍什么是六度分隔理论,它的背景、意义和研究现状。
社会学家们总是希望他们的研究不仅是基于实验和经验性认识的,还渴望那些结论能够和公认的真理——数学有所联系。今天,我们来讲述一个最常见的社会现象,和现代数学理论结合的例子。
千百年来,有无数这样的偶遇和巧合:我们和一个陌生人成为了朋友,聊着聊着,却发现原来你们认识同一个人,或者你认识一个人和他认识的一个人是好朋友,于是你们马上会觉得对方更加亲切,然后同时感叹:世界是如此的渺小。
在人们发出了无数次这样的感叹之后,终于有人不再满足于这么问一下,而是要去算一算,地球到底有多么小。
1967年,哈佛大学心理学教授Stanley Milgram做了一些这样的实验:比如志愿者Alice,她是哈佛大学社会学系学生,实验要求她去联系一个从来没有听说过的,远在奥地利的某一家冰淇淋店老板,Bob。Alice可以采用的方法是从她的朋友中找到一个她认为最有可能联系上Bob的人,比如德国的社会学教授Carl,然后写信给Carl,让他继续这个过程。于是Carl也从他的朋友圈里找一个尽可能和Bob有关系的人,写信过去……
Milgram做了很多次(到底有多少次,后面说,呵呵)这样的实验,得到一个假设:你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。这个假设就被称为六度分隔理论。
于是你想:“哇塞~~太好了,我那么喜欢好莱坞帅哥尼古拉斯·凯奇,那我是不是可以通过几封信就能联系上他呢?”很抱歉,这个问题我无法回答,也许你可以去试一试,如果是我,第一步写信给我在耶鲁大学读书的同学,也许她会把信转给一个爱好摄影的同学,然后那个同学转给一个音像师,那个音像师再转给好莱坞的一位导演,然后就联系上尼古拉斯·凯奇了。为什么没有这个可能呢?
你会说,哈哈,我不相信就有这么巧的事情。你只是做了一点实验而已,你就能保证结论一定是正确的?事实上,确实值得怀疑,Milgram做了一百多次实验,只有十来次成功了的,也就是成功的联系上了指定的人,其中最快的用了3次中转,他统计出平均数是6,然后就急忙把结论发表了出来。
我们的心理学家也在头疼这些质疑,所以在本文一开始我们就说,他们总想让自己的研究工作和数学或多或少扯上一点关系,这样才能得到大多数人的认同——或者是唬住大多数不懂数学的人?呵呵。
最近几年,又出现了大量和这个问题类似的例子。为什么蠕虫病毒在互联网上传播得那么快,二十四小时能感染几千万台主机?为什么SARS病毒很难遏制住传播,总是逃开人们的封锁扩散开?
在数学家的眼里,这一类问题都从它的实际意义中抽象了出来,形成了一个叫小世界模型的东西,它是图论的一个新兴分支学科复杂网络理论中的一个课题。
图论,就是点和线之间拓扑关系的学科,起源于欧拉解决的七桥问题。它是具有高度抽象性的,比如可以用点表示人,而两个点之间有连线,表示这两个人是朋友;或者点表示互联网上的主机,连线表示它们之间存在物理链路。
当图论中的点和线数量变得非常巨大,比如六十亿,这是人类的数量;比如2的48次,这是IPv6网络理论上的主机数量,这个时候我们就无法用传统的图论方法来研究这个图了——你连这个图本身都无法确定。我们只能够通过统计的方法来研究这个图的性质。这就是复杂网络理论。
那么你说,一个都无法确定的东西,数学家是怎么样来研究的呢?事实上,数学家根据一些来源于实际需要的假设,建立合适的模型,在这个模型下进行研究工作。比如人们认识的大部分人都是周围的人,比如你的邻居,你的同学,他们大多在一个城市这样的小范围。但你也会认识少数的离你很远的人,比如你和远在悉尼的一位经济学家都喜欢羽叶茑萝,于是你们成了好朋友。所以数学家们建立这样一个模型,有大量的节点,每个节点对于它们附近的点,比如有1%的概率有连线,而对于所有的节点,比如都有万分之一的概率有连线。这种随机图就是现实世界人际关系的一个很粗糙的模型。进一步的合理化以后,就是小世界模型了。
对小世界模型的研究已经取得一些进展,其中之一就是六度分隔理论中的6,是一个比较好的估计值。就是说6确实是比较平均的一个数。
有意思的是,就在数学家们中间,就存在一个最好的六度分隔理论的例子。匈牙利伟大的数学家Paul Erdös一生喜好和别人合作,和他合作发表过论文的数学家达到1500人之多,实属罕见。由于Erdös对整个数学届和每一位数学家有很大影响,所以大家喜欢这样一个游戏,就是计算自己的Erdös数。如果你和Erdös直接合作写过论文,那么你的Erdös数是1。如果你没有和他合作写过论文,但是你曾经合作过的一个伙伴,他的Erdös数是1,那么你就有Erdos数2。以此类推。(笔者不才,至今Erdös数还是正无穷,考虑到每一个在世的数学家都有他们的Erdös数,所以笔者还不算数学家:-P)最近出现了一个网站,叫The Erdös Number Project,它根据全世界的期刊论文数据库来统计数学家的Erdös数,统计结果显示:有超过80%的数学家,Erdös数为3、4、5,其中3最多,占50%多。也就是说,任何两个数学家之间以Erdös为纽带,他们之间合作的“跳数”最有可能是3+3=6,正好是我们的结论。
无独有偶,哥伦比亚大学的Duncan J. Watts 教授建立了一个电影数据库,分析每一个演员和Kevin Bacon之间的关系,得到的平均值是2.918,而且没有一个的中间跳数是超过10的。注意到这里2.918的两倍近似的为6,我们将再一次感到不可思议。
最近的消息是,哥伦比亚大学一些对这个感兴趣的学者们,发起了一个“小世界研究计划”,他们在继续Milgram的实验,不过他们用Email取代了传统的信件,将整个实验放在网上进行。如果你对这个感兴趣,可以去报名做他们的志愿者。不过他们的目标是指定好了的,也就是说你不能够自己选一个漂亮女影星作为最终目标。另外,如果有一天有一封朋友的邮件过来,要你帮忙发给某某你根本没听说过的人,不要觉得惊奇哦~
不论如何,我们基本上已经认同了六度分隔理论的正确性,并且将它实际运用起来。很多商务人际交往网站,比如天际网,都以这个理论作为网站的基本立足点,它们认为,你应该尽可能多的扩展自己的一度和二度好友,这样,你的职业生涯将变得更加便利。
如果你对六度分隔理论很感兴趣,想做进一步阅读,我们建议你看一看Duncan J. Watts的科普作品Six Degrees: The Science of a Connected Age ,该书现在已经有中译本《六度:互联时代的科学》。
如果你觉得自己数学基础比较好,希望了解一些关于复杂网络理论的研究情况,可以参看上海交通大学汪小帆等编著的《复杂网络理论及其应用》,清华大学出版社,2006.4。这本书的特点是在数学理论的背景下,介绍了大量复杂网络方面的题材,并且给出了相关研究需要的参考文献。另外,行文幽默,跳过数学部分,可以当一本小说看。有概率论和统计学基础的读者会看的更加过瘾。
另外,Duncan J. Watts的另一部半科普性质的作品Small Worlds : The Dynamics of Networks between Order and Randomness也即将由中国人民出版社翻译出版,中文名就定为《小世界》,值得期待。