从物理执行的角度透视SparkJob

一:再次思考pipeline
即使采用pipeline的分布,函数f对依赖的RDD中的数据的操作也会有俩种方式:
1.f(record),f作用于集合的每一条记录,每次只作用于一条记录;
2.f(record),f一次性作用于集合的全部数据;

*Spark采用的是第一种方式,原因:
1.无需等待,可以最大化的使用集群的计算资源;
2.减少OOM的发生;
3.最大化的有利于开发;
4.可以精准的控制每一Partition本身(Dependency)及其内部的计算;
5.基于lineage的算子流动式函数式编程,节省了中间结果的产生,并且可以最快的恢复;
疑问:会不会增加网络通信?当然不会!因为在pipeline!

二:思考Spark Job具体的物理执行

Spark Application里面可以产生1个或者多个Job,例如spark-shell默认启动的时候内部就没有Job,只是作为资源的分配程序,可以在spark-shell里面写代码产生若干个Job,普通程序中一般而言可以有不同的Action,每一个Action一般也会触发一个Job。

Spark是Mapreduce思想的一种更加精致和高效的实现,Mapreduce有很多具体不同的实现,例如Hadoop的Mapreduce基本的计算流程如下:首先是以JVM为对象的并发执行的Mapper,Mapper中Map的执行会产生输出数据,输出数据会经过Partition指定的规则放到Local FileSystem中,然后会经由shuffle、Sort、Aggregate变成Reducer中的reduce的输入,执行reduce产生最终的执行结果:Hadoop MapReduce执行的流程虽然简单,但是过于死板,尤其是在构造复杂算法(迭代)时候非常不利于算法的实现,且执行效率极为地下!

Spark算法构造和物理执行时最最基本的核心:最大化pipeline!!

基于pipeline的思想,数据被使用的时候才开始计算,从数据流动的视角来说,是数据流动到计算的位置!!! 实质上从逻辑的角度来看,是算法在数据上流动!!

从算法构建的角度而言:肯定是算子作用于数据,所以是算子在数据上流动;
从物理执行的角度而言:是数据流动到计算的位置;方便系统最为高效的运行!

对于pipeline而言,数据计算的位置就是每个Stage中最后的RDD,一个震撼人心的内幕真相就是:每个Stage中除了最后一个RDD算子是真实的以外,前面的算子都是假的!!

由于计算的Lazy特性,导致计算从后往前回溯,形成Computing Chain,导致的结果就是需要首先计算出具体一个Stage内部左侧的RDD中本次计算依赖的Partition

一个Stage内部有很多个Partition

三:窄依赖的物理执行内幕

一个Stage内部的RDD都是窄依赖,窄依赖计算本身是逻辑上看是Stage内部最左侧的RDD开始立即计算的,根据Computing Chain,数据(Record)从一个计算步骤流动到下一个计算步骤,以此类推,直到计算到Stage内部的最后一个RDD来产生计算结果。

Computing Chain的构建是从后往前回溯构建而成,而实际的物理计算则是让数据从前往后在算子上流动,直到流动到不能再流动位置才开始计算下一个Record。这就导致一个美好的结果:后面的RDD对前面的RDD的依赖虽然是Partition级别的数据集合的依赖,但是并不需要RDD把Partition中所有的Records计算完毕才整体往后流动数据进行计算,这就极大的提高了计算速率!

四:宽依赖物理执行内幕

必须等到依赖的父Stage中的最后一个RDD把全部数据彻底计算完毕,才能够经过shuffle来计算当前的Stage!

Rdd中的getDependencies负责确定rdd的之间的依赖关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值