Shortest Path
Accepts: 40
Submissions: 610
Time Limit: 4000/2000 MS (Java/Others)
Memory Limit: 131072/131072 K (Java/Others)
问题描述
有一条长度为n的链. 节点i和i+1之间有长度为1的边. 现在又新加了3条边, 每条边长度都是1. 给出m个询问, 每次询问两点之间的最短路.
输入描述
输入包含多组数据. 第一行有一个整数T, 表示测试数据的组数. 对于每组数据: 第一行包含2个整数n和m (1≤n,m≤105)表示节点的数目和询问数目. 接下来一行包含6个有空格分开的整数a1,b1,a2,b2,a3,b3 (1≤a1,a2,a3,b1,b2,b3≤n), 表示新加的三条边为(a1,b1), (a2,b2), (a3,b3). 接下来m行, 每行包含两个整数si和ti (1≤si,ti≤n), 表示一组询问. 所有数据中m的和不超过106.
输出描述
对于每组数据, 输出一个整数S=(i=1∑mi⋅zi) mod (109+7), 其中zi表示第i组询问的答案.
输入样例
1 10 2 2 4 5 7 8 10 1 5 3 1
输出样例
7
/*
hdu 5636 搜索 BestCoder Round #74 (div.2)
给你一条链,每两个节点之间的距离是1,然后加上3条边。
m个询问,[l,r]之间的最短路
表示最开始想的是每个询问查找一次最小值,但是思路还是有问题,准确的说只有3
条捷径会对最后的答案造成影响。所以每次我们只需要枚举走过捷径的数目以及进入
的位置,找出最小值即可。
正解:
通过搜索,可以找出走3条捷径的所有情况,然后取出最小值即可
hhh-2016-03-05 21:43:51;
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long ll;
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
#define MID(a,b) (a+((b-a)>>1))
const int maxn=100005;
const int MOD = 1e9+7;
int tx[5],ty[5];
int vis[5],l,r;
ll ans ;
void fin(int now,ll len)
{
if(len+abs(r-now)<ans) ans = (ll)(len+abs(r-now))%MOD;
for(int i =1;i <= 3;i++)
{
if(!vis[i])
{
vis[i] = 1;
fin(tx[i],abs(len+abs(ty[i]-now))+1);
fin(ty[i],abs(len+abs(tx[i]-now))+1);
vis[i] = 0;
}
}
}
int main()
{
int t,n,q;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&q);
for(int i =1;i <= 3;i++)
{
scanf("%d%d",&tx[i],&ty[i]);
}
ll sum = 0;
for(int i =1;i <= q;i++)
{
scanf("%d%d",&l,&r);
ans = abs(l-r);
fin(l,0);
sum=(ll)(sum+(ll)(ans*i)%MOD)%MOD;
// cout << ans <<endl;
}
printf("%I64d\n",sum%MOD);
}
return 0;
}