大一寒假训练五(GCD&&快速幂)2020.1.4

本文深入探讨了最大公约数(GCD)和最小公倍数(LCM)的算法实现,提供了多种场景下的代码示例,包括两数、多数组合的GCD与LCM计算,以及涉及快速幂取模等高级运算的应用。适用于竞赛编程、数学问题解决及软件开发中数学算法的优化。
摘要由CSDN通过智能技术生成

最大公约数和最小公倍数

#include <iostream>
#include<bits/stdc++.h>
using namespace std;
long long gcd(long long a,long long b)
{
    return b?gcd(b,a%b):a;

}
long long lcm(long long a,long long b)
{return a/gcd(a,b)*b;}

int main()
{
    long long a,b;
    while(cin>>a>>b)
    {printf("%lld %lld\n",gcd(a,b),lcm(a,b));}
    return 0;
}

又见GCD

#include <iostream>
#include<bits/stdc++.h>
using namespace std;
long long gcd(long long a,long long b)
{
    return b?gcd(b,a%b):a;

}
long long lcm(long long a,long long b)
{return a/gcd(a,b)*b;}

int main()
{
    long long a,b;
    while(cin>>a>>b)
    {printf("%lld %lld\n",gcd(a,b),lcm(a,b));}
    return 0;
}

多个数的最大公约数

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n, a, b;
	while(cin>>n)
	{
		cin>>a;
		for(int i=1; i<n; i++)
		{
			cin>>b;
			a = __gcd(a, b);
		}
		cout<<a<<endl;
	}
	return 0;
}

多个数的最小公倍数

#include <iostream>
#include<bits/stdc++.h>
using namespace std;
long long gcd(long long a,long long b)
{return b?gcd(b,a%b):a;}
long long lcm(long long a,long long b)
{return a/gcd(a,b)*b;}
int main()
{
    long long n,i,a[11];
    while(cin>>n)
    {
        for(i=1;i<=n;i++)
            cin>>a[i];
        for(i=1;i<=n-1;i++)
            a[i+1]=lcm(a[i],a[i+1]);
        printf("%lld\n",a[n]);
    }
    return 0;
}

LCM&GCD

#include <bits/stdc++.h>
using namespace std;
int t;
long long x,y;
int main()
{
	cin>>t;
	int cnt;
	while(t--)
	
	{
		cnt=0;
	cin>>x>>y;
	 long long tmp=x*y;
	 for(long long i=x;i<=y;i++)
	  if(tmp%i==0) 
	  if(tmp/i>=x&&tmp/i<=y&&__gcd(i,tmp/i)==x)
	  cnt++;
	    cout<<cnt<<endl;
	}
	return 0;
}

人见人爱gcd

#include <iostream>
#include<bits/stdc++.h>
using namespace std;
int gcd(int a,int b)
{return b?gcd(b,a%b):a;}
int main()
{
    int t,a,b;
    ios::sync_with_stdio(false);
    while(cin>>t)
    {
        while(t--)
        {
            cin>>a>>b;
            printf("%d\n",a*a-2*b*gcd(a,b));
        }
    }
    return 0;
}

高木同学的因子

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
	ll x, y;
	cin>>x>>y;
	int m = __gcd(x, y);
	int cnt=0;
	for(int i=1; i*i<=m; i++)
		if(m%i==0) cnt++;
	if(sqrt(m)*sqrt(m) == m) cout<<cnt*2-1<<endl; //judge the perfect square number
	else cout<<cnt*2<<endl;
	return 0;
}

快速幂取模

#include <bits/stdc++.h>
using namespace std;
long long mode(long long a,long long b,long long mod)
{
    long long ans=1;
    while(b)
    {
        if(b%2==1)
        {b--;ans=ans*a%mod;}
        a=a*a%mod;
        b=b/2;
    }
    return ans;
}
int main()
{
    long long a,b,c;
    while(cin>>a>>b>>c)
    printf("%lld\n",mode(a,b,c));
    return 0;
}

库特的数学题

#include <bits/stdc++.h>
using namespace std;
long long mode=1e9+7;
long long MODE(long long a,long long b) 
{
	long long sum=1;
	while(b)
	{
		if(b%2)
		{
			sum=sum*a%mode;
			b--;
		 } 
		 b=b/2;
		 a=a*a%mode;
	}
	return sum;
}
int main()
{
	long long n,m;
	cin>>n;
	m=MODE(3,n);
	m*=2;
	m%=mode;
	cout<<m<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值