- 博客(30)
- 收藏
- 关注
原创 CSP认证准备第四天-BFS(双端BFS/0-1BFS)和DFS
add_front:将状态添加到队列前端(用于不增加代价的移动)add_back:将状态添加到队列后端(用于增加代价的移动):处理0-1权重图的最短路径问题,0代价的操作放队首,1代价的操作放队尾。:使用三维数组记录到达位置(x,y)时方向为dir的最小代价。:从终点开始搜索到起点,与正向搜索等价但实现上更方便。这道题让我疑惑的就是方向,注意这里的坐标原点为左上角,所以如果x不变,y-1,是往左移动的。不要受x、y命名的影响,这里x就是行,y就是列,行号不变,列号减小就是往左移动。
2025-06-02 17:49:36
506
原创 CSP认证准备第三天-差分及第36次CCF认证(BFS)
文章主要介绍了两种常用算法:差分数组和广度优先搜索(BFS)。差分数组通过记录原数组相邻元素的差值,将区间加减操作转化为单点操作,从而优化时间复杂度。文章通过例题展示了如何利用差分数组高效处理区间更新问题。BFS则是一种图搜索算法,用于寻找从起点到目标点的最短路径。文章详细描述了BFS的基本原理和实现过程,并通过走迷宫和密室问题两个例题展示了BFS的应用。最后,文章还提到了链式前向星作为图的存储方式,并提供了BFS的模板代码。
2025-05-13 21:42:00
820
原创 CSP认证准备第二天-第36/37次CCF认证
主要是间接赋值比较难。自己编写的代码如下,但是有问题,没有解决间接赋值的问题,可以参考一下deepseek的回答。但是deepseek给的代码运行起来也有问题,我就没再继续研究下去了。开始做有题解的题目吧。
2025-04-10 20:38:15
553
原创 伪分布式Spark3.4.4安装
我的版本:hadoop 3.1.3 hbase 2.2.2 java openjdk version "1.8.0_432"
2025-02-08 14:57:08
372
原创 IDM下载链接分享
链接:https://pan.baidu.com/s/18Ox04Ig-kj6DVpiap4ZsZQ?通过百度网盘分享的文件:Internet Download Manager v6.36 Bui...里面有教程,不要更新!
2024-11-16 23:32:15
829
1
原创 【决策树】- 二分法处理连续值
在决策树算法中,处理连续特征通常采用二分法,将其转化为离散特征。此方法通过寻找最佳分割点,将连续特征划分为两个区间。
2024-10-22 16:57:48
507
原创 Python下载CMIP6数据-记载自用
Python下载CMIP6数据(从sh文件提取url,利用url下载nc文件,支持跳过已下载的文件,支持续下)
2024-09-21 16:52:23
559
原创 【码题集题目】抽奖
小码哥计划抽n 次,问亏本的概率是多少(即得到的奖金小于本金),小码哥赚了超过一半本金的概率是多少(赚到的钱是奖金-本金后的部分)?小码哥在集市上逛街,遇见了抽奖活动,抽一次2元,但是可能会抽出1,2,3,4四种情况,他们是等概率的。注:本题解题思路来源b站up主:轩哥码题,有需要可跳转B站看up详细讲解。第二行输出赚超过一半本金的概率。概率用最简分数表示,具体看样例。(2)dp[i-1][j-k]要注意i也要减一,表示上一次抽奖!输入格式:输入n表示小码哥连抽的次数。输出格式:第一行输出亏的概率;
2024-08-15 08:56:16
455
转载 Data Imbalance, Uncertainty Quantification, and Generalization via Transfer Learning in Data-driven
讨论了神经网络在天气和气候模型中的数据驱动子网格参数化中的应用,并指出了三个挑战:数据不平衡、不确定性量化和泛化到其他气候的能力。通过使用重采样和加权损失函数等方法,文章成功地解决了数据不平衡问题,并展示了三种不确定性量化方法。最后,文章还通过迁移学习提高了神经网络在较温暖气候下的泛化能力。总之,该研究为开发可靠且通用的数据驱动参数化提供了重要见解。
2024-07-31 18:35:38
84
原创 跟着沐神学深度学习DAY4
(1)分类有多个输出,输出i代表预测为第i类的置信度(2)对类别进行有效编码:如果为第i类的话,那么yi就为1,其他为0。!这里的y代表真实值,对真实情况进行编码(3)o_i是预测其他类的输出,o_y是预测正确类的输出。注意o为输出而y才是概率。(4)将输出的o值转化成概率,并且非负以及和为1。(5)交叉熵计算公式:(6)由于y(真实值)中只有一个为1,而其他的均为0,故交叉熵公式可以化简。就是对真实值类别的预测值求log然后取负数。(本节笔记摘自评论区)
2024-07-29 00:16:16
804
原创 跟着沐神学深度学习DAY3
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True) #两行的列向量b = torch.zeros(1, requires_grad=True) # 标量"""线性回归模型"""return torch.matmul(X, w) + b #广播机制划重点: 需要w,b 进行更新,所以才将requires_grad设置为True广播机制: 当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。
2024-07-27 21:29:36
1042
原创 跟着沐神学深度学习DAY2
(4)一般不用向量对向量求导(结果为矩阵),利用sum()函数将y求和得到一个标量,然后再对x向量求导。这里,我们的目的不是计算微分矩阵,而是单独计算批量中每个样本的偏导数之和。(6) 即使构建函数的计算图需要通过Python控制流(例如,条件、循环或任意函数调用),我们仍然可以计算得到的变量的梯度。而且看反向这个树,下一层的结点的求导必须要依赖上一层的求导结果,例如对a求导时,要知道z对b求导的结果。计算反向时,要利用到正向中的结果,所以计算正向时要将结果保存下来。的梯度,但由于某种原因,希望将。
2024-07-26 17:58:31
690
原创 跟着沐神学深度学习DAY1
X[:],和X+=,都是给X中的元素进行赋值操作,对X矩阵是没有更改的。是 PyTorch 中的一个函数,用于创建一个所有元素都填充为 1 的张量(Tensor)。(3)利用get_dummies(inputs,dummy_na=True)将函数的非数值空值转换为0、1的形式。(6)torch.mv(x,y):矩阵向量积,一个长度为m的列向量。(2) 列向量关于标量的导数,仍然为列向量。(1) 标量关于列向量的导数是一个行向量。(3)列向量关于列向量的导数为一个矩阵。形状相同且所有元素都为0的新张量。
2024-07-26 14:44:40
671
原创 MPI并行实现归并排序
(1)merge函数用于合并两个有序数组left和right,返回一个合并后的有序数组。i++;else {j++;i++;j++;(2)mergeSort函数实现了归并排序算法。如果数组大小小于或等于阈值threshold,则直接使用STL的sort函数进行排序。否则,将数组分成两部分,分别进行递归排序,然后合并结果。return arr;
2024-07-21 21:50:51
1121
原创 码题集-供水管线
在n个城市之间原本要规划修建许多条下水管道,管理人员发现这些管道会形成一条回 路,而下水道只要将城市联通即可,所以回路会加大施工的成本。所以希望你来帮忙找 出多余的管道来进行优化。当然管道和管道之间是有区别的,比如用s来表示i到j 的管道管理费用,8i越小则表示该管道管理费用越低。能否去除一些管线,使得总管理 成本最低。求出最低的管理成本(不存在自身与自身成为回路的管道)。
2024-07-21 19:39:37
488
原创 学习型索引结构--ALEX: An Updatable Adaptive Learned Index 论文代码复现记录(基于VS2022)
记录了运行ALEX索引的论文代码的过程
2024-07-06 23:26:40
1455
1
原创 黑客小马哥-做题
小码哥是一名黑客,他最近刚彩票中奖,由于还没兑换,小码哥十分担心彩票被盗(小码哥过分谨慎了),他想为自己的保险箱设新的密码,顺便他想让你测试编码。先给你一个加密后的字符串和加密前的字符串,判断加密前的字符串是否能得到加密后的字符串。字符串中字符均为大写字母。
2024-07-05 19:45:14
275
大一上学期C++课程设计(学生管理系统)
2023-07-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人