- 博客(2)
- 收藏
- 关注
原创 IMAGEBIND: One Embedding Space To Bind Them All 个人笔记
如上表所示,Random对表中不同数据集进行随机分类,Text Paired表示使用专门的文本与数据集对应的模态进行对比学习训练的zero-shot性能表现,ImageBind表示在表中各数据集上做zero-shot分类任务上的结果,Absolute SOTA表示在特定数据集上专门有监督训练的最好模型,可以看出ImageBind使用图像绑定了其他模态进行对比学习出的嵌入空间,能够隐式学习到文本和其他模态的嵌入空间,从而能够涌现出zero-shot的分类能力。证明了该方法的在多模态学习的有效性。
2023-09-18 17:38:19 355
原创 SimCC: a Simple Coordinate Classification Perspective for Human Pose Estimation翻译与笔记
一直以来HPE(人体姿态估计)采用2D热图算法来计算骨骼节点,然而有几个缺点:1.在输入的解析度较低时,性能表现较差2.为了更高的定位精度,需要采用多个计算成本较高的上采样层。3.需要额外的后处理操作来减少误差。SimCC将HPE看成垂直和水平坐标的两个分类任务,将像素划分为更小的几个区块,因此能够达到亚像素级别的定位精度,因此不再需要上采样和后处理操作。
2023-09-09 16:10:17 1453 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人