强化学习在具身智能中的定位与作用
1. 具身智能的核心特征
具身智能(Embodied Intelligence)强调智能体通过 身体与环境的物理交互 来学习和适应,其核心特征包括:
-
感知-行动闭环:通过传感器获取环境信息(如视觉、触觉),并通过执行动作改变环境状态。
-
动态适应性:在复杂、不确定的环境中实时调整行为策略。
-
具身性(Embodiment):智能体的身体形态(如机械结构、运动能力)直接影响其认知与决策。
2. 强化学习的本质与目标
强化学习(Reinforcement Learning, RL)是一种机器学习范式,其核心是 通过试错最大化长期累积奖励:
-
智能体-环境交