题目描述:
如上所示,由正整数1,2,3……组成了一颗特殊二叉树。我们已知这个二叉树的最后一个结点是n。
现在的问题是,结点m所在的子树中一共包括多少个结点。
比如,n = 12,m = 3那么上图中的结点13,14,15以及后面的结点都是不存在的,
结点m所在子树中包括的结点有3,6,7,12,因此结点m的所在子树中共有4个结点。
输入:
输入数据包括多行,每行给出一组测试数据,包括两个整数m,n (1 <= m <= n <= 1000000000)。
输出:
对于每一组测试数据,输出一行,该行包含一个整数,给出结点m所在子树中包括的结点的数目。
代码实现:
#include <cstdio>
int tree(int m,int n){
if(m > n){
return 0;
}
else{
return 1+ tree(2*m,n) + tree(2*m+1,n);
}
}
int main(){
int m,n;
while(scanf("%d%d",&m,&n) != EOF ){
if(m == 0){
break;
}
printf("%d\n", tree(m,n));
}
}
输入
3 12
输出
4