- 回溯算法解决子集之类的问题
回溯算法的框架主要有:
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
78. 子集
class Solution {
//回溯算法
List<List<Integer>> res = new LinkedList<>();
//记录回溯算法的递归路径
LinkedList<Integer> track = new LinkedList<>();
public List<List<Integer>> subsets(int[] nums) {
backtrack(nums,0);
return res;
}
void backtrack(int[] nums,int start){
//前序位置,每一个节点的值都是一个子集
res.add(new LinkedList<>(track));
//回溯算法框架
for(int i = start; i < nums.length ; i++){
//做选择
track.addLast(nums[i]);
//进入下一个
backtrack(nums,i+1);
//撤销选择
track.removeLast();
}
}
}
77. 组合
77. 组合
大小为 k 的组合就是大小为 k 的子集。
class Solution {
List<List<Integer>> res = new LinkedList<>();
// 记录回溯算法的递归路径
LinkedList<Integer> track = new LinkedList<>();
// 主函数
public List<List<Integer>> combine(int n, int k) {
backtrack(1, n, k);
return res;
}
void backtrack(int start, int n, int k) {
// base case
if (k == track.size()) {
// 遍历到了第 k 层,收集当前节点的值
res.add(new LinkedList<>(track));
return;
}
// 回溯算法标准框架
for (int i = start; i <= n; i++) {
// 选择
track.addLast(i);
// 通过 start 参数控制树枝的遍历,避免产生重复的子集
backtrack(i + 1, n, k);
// 撤销选择
track.removeLast();
}
}
}
46. 全排列
class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> permute(int[] nums) {
//记录路径
LinkedList<Integer> track = new LinkedList<>();
//路径中的元素会被标记为true,避免重复使用
boolean[] used = new boolean[nums.length];
backtrack(nums,track,used);
return res;
}
void backtrack(int[] nums,LinkedList track,boolean[] used){
//触发结条件
if(track.size() == nums.length){
res.add(new LinkedList(track));
return;
}
for (int i = 0; i < nums.length ; i++){
if(used[i]){
//如果已经在路径中,则跳过
continue;
}
//做选择
track.add(nums[i]);
used[i] = true;
//进入下一层决策树
backtrack(nums,track,used);
//取消选择
track.removeLast();
used[i] = false;
}
}
}
90. 子集 II
90. 子集 II
本题和子集 I的区别在于该数组存在重复元素
- 标准的子集/组合问题是如何保证不重复使用元素的?
- 答案在于 backtrack 递归时输入的参数 start:
class Solution {
//回溯算法+减枝
List<List<Integer>> res = new LinkedList<>();
LinkedList track = new LinkedList<>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
backtrack(nums,0);
return res;
}
void backtrack(int[] nums,int start){
res.add(new LinkedList<>(track));
for(int i = start; i < nums.length; i ++){
if( i > start && nums[i] == nums[i - 1]){
continue;
//值相同的相邻树枝,只遍历第一条
}
track.addLast(nums[i]);
backtrack(nums,i+1);
track.removeLast();
}
}
}
40. 组合总和 II
class Solution {
List<List<Integer>> res = new LinkedList<>();
LinkedList<Integer> track = new LinkedList<>();
int sum = 0;
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
if(candidates.length == 0){
return res;
}
//排序
Arrays.sort(candidates);
backtrack(candidates,0,target);
return res;
}
void backtrack(int[] candidates,int start , int target){
//结束条件
if(sum == target){
res.add(new LinkedList<>(track));
return;
}
if(sum > target){
return;
}
for(int i = start; i < candidates.length; i++){
//剪枝 值相同的树枝,只遍历第一条
if(i > start && candidates[i] == candidates[i - 1]){
continue;
}
track.addLast(candidates[i]);
sum += candidates[i];
backtrack(candidates,i + 1,target);
track.removeLast();
sum -= candidates[i];
}
}
}
47. 全排列 II
47. 全排列 II
标准全排列算法之所以出现重复,是因为把相同元素形成的排列序列视为不同的序列,但实际上它们应该是相同的;而如果固定相同元素形成的序列顺序,当然就避免了重复。
class Solution {
List<List<Integer>> res = new LinkedList<>();
LinkedList<Integer> track = new LinkedList<>();
boolean[] used;
public List<List<Integer>> permuteUnique(int[] nums) {
//相同元素的全排列的去重,考虑使相同元素的位置固定
Arrays.sort(nums);
used = new boolean[nums.length];
backtrack(nums);
return res;
}
void backtrack(int[] nums){
if(nums.length == track.size()){
res.add(new LinkedList<>(track));
return ;
}
for (int i = 0; i < nums.length; i++){
if(used[i]){
//跳过
continue;
}
if(i > 0 && nums[i] == nums[i-1] && !used[i-1]){ //当相同相邻元素的相对位置发生了交换,且前一个元素未被访问到,则跳过 剪枝
continue;
}
track.addLast(nums[i]);
used[i] = true;
backtrack(nums);
track.removeLast();
used[i] = false;
}
}
}
39. 组合总和
class Solution {
List<List<Integer>> res = new LinkedList<>();
// 记录回溯的路径
LinkedList<Integer> track = new LinkedList<>();
// 记录 track 中的路径和
int trackSum = 0;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
if (candidates.length == 0) {
return res;
}
backtrack(candidates, 0, target);
return res;
}
// 回溯算法主函数
void backtrack(int[] nums, int start, int target) {
// base case,找到目标和,记录结果
if (trackSum == target) {
res.add(new LinkedList<>(track));
return;
}
// base case,超过目标和,停止向下遍历
if (trackSum > target) {
return;
}
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 选择 nums[i]
trackSum += nums[i];
track.add(nums[i]);
// 递归遍历下一层回溯树
// 同一元素可重复使用,注意参数
backtrack(nums, i, target);
// 撤销选择 nums[i]
trackSum -= nums[i];
track.removeLast();
}
}
}
排列(元素无重可复选)
class Solution {
List<List<Integer>> res = new LinkedList<>();
LinkedList<Integer> track = new LinkedList<>();
public List<List<Integer>> permuteRepeat(int[] nums) {
backtrack(nums);
return res;
}
// 回溯算法核心函数
void backtrack(int[] nums) {
// base case,到达叶子节点
if (track.size() == nums.length) {
// 收集叶子节点上的值
res.add(new LinkedList(track));
return;
}
// 回溯算法标准框架
for (int i = 0; i < nums.length; i++) {
// 做选择
track.add(nums[i]);
// 进入下一层回溯树
backtrack(nums);
// 取消选择
track.removeLast();
}
}
}
排列/组合/子集问题总结
- 元素无重不可复选,即 nums 中的元素都是唯一的,每个元素最多只能被使用一次,backtrack 核心代码如下:
/* 组合/子集问题回溯算法框架 */
void backtrack(int[] nums, int start) {
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 做选择
track.addLast(nums[i]);
// 注意参数
backtrack(nums, i + 1);
// 撤销选择
track.removeLast();
}
}
/* 排列问题回溯算法框架 */
void backtrack(int[] nums) {
for (int i = 0; i < nums.length; i++) {
// 剪枝逻辑
if (used[i]) {
continue;
}
// 做选择
used[i] = true;
track.addLast(nums[i]);
backtrack(nums);
// 撤销选择
track.removeLast();
used[i] = false;
}
}
- 元素可重不可复选,即 nums 中的元素可以存在重复,每个元素最多只能被使用一次,其关键在于排序和剪枝,backtrack 核心代码如下:
Arrays.sort(nums);
/* 组合/子集问题回溯算法框架 */
void backtrack(int[] nums, int start) {
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 剪枝逻辑,跳过值相同的相邻树枝
if (i > start && nums[i] == nums[i - 1]) {
continue;
}
// 做选择
track.addLast(nums[i]);
// 注意参数
backtrack(nums, i + 1);
// 撤销选择
track.removeLast();
}
}
Arrays.sort(nums);
/* 排列问题回溯算法框架 */
void backtrack(int[] nums) {
for (int i = 0; i < nums.length; i++) {
// 剪枝逻辑
if (used[i]) {
continue;
}
// 剪枝逻辑,固定相同的元素在排列中的相对位置
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
continue;
}
// 做选择
used[i] = true;
track.addLast(nums[i]);
backtrack(nums);
// 撤销选择
track.removeLast();
used[i] = false;
}
}
- 元素无重可复选,即 nums 中的元素都是唯一的,每个元素可以被使用若干次,只要删掉去重逻辑即可,backtrack 核心代码如下:
/* 组合/子集问题回溯算法框架 */
void backtrack(int[] nums, int start) {
// 回溯算法标准框架
for (int i = start; i < nums.length; i++) {
// 做选择
track.addLast(nums[i]);
// 注意参数
backtrack(nums, i);
// 撤销选择
track.removeLast();
}
}
/* 排列问题回溯算法框架 */
void backtrack(int[] nums) {
for (int i = 0; i < nums.length; i++) {
// 做选择
track.addLast(nums[i]);
backtrack(nums);
// 撤销选择
track.removeLast();
}
}