设计一组N个数,确定其中第k个最大值,方法很多,最直观的想法是将n个数由大到小排好序,取第k个数即可,但效率并不高。
网上的方法如下:
解法1: 我们可以对这个乱序数组按照从大到小先行排序,然后取出前k大,总的时间复杂度为O(n*logn + k)。
解法2: 利用选择排序或交互排序,K次选择后即可得到第k大的数。总的时间复杂度为O(n*k)
解法3: 利用快速排序的思想,从数组S中随机找出一个元素X,把数组分为两部分Sa和Sb。Sa中的元素大于等于X,Sb中元素小于X。这时有两种情况:
1. Sa中元素的个数小于k,则Sb中的第k-|Sa|个元素即为第k大数;
2. Sa中元素的个数大于等于k,则返回Sa中的第k大数。时间复杂度近似为O(n)
解法4: 二分[Smin,Smax]查找结果X,统计X在数组中出现,且整个数组中比X大的数目为k-1的数即为第k大数。时间复杂度平均情况为O(n*logn)
解法5:用O(4*n)的方法对原数组建最大堆,然后pop出k次即可。时间复杂度为O(4*n + k*logn)
解法6:维护一个k大小的最小堆,对于数组中的每一个元素判断与堆顶的大小,若堆顶较大,则不管,否则,弹出堆顶,将当前值插入到堆中。时间复杂度O(n * logk)
解法7:利用hash保存数组中元素Si出现的次数,利用计数排序的思想,线性从大到小扫描过程中,前面有k-1个数则为第k大数,平均情况下时间复杂度O(n)
解法3:是比较好一种,用快排来做,java实现代码如下:
package algorithm;
/**
* @author fengzb.fnst
*
*/
public class N_element {
private static int partition(int[] L, int low, int high) {
int temp = L[low];
int pt = L[low]; // 哨兵
while (low != high) {
while (low < high && L[high] <= pt)
high--;
L[low] = L[high];
while (low < high && L[low] >= pt)
low++;
L[high] = L[low];
}
L[low] = temp;
return low;
}
public static void quickSort(int[] L, int low, int high) // 快速排序
{
int pl;
if (low < high) {
pl = partition(L, low, high);
quickSort(L, low, pl - 1);
quickSort(L, pl + 1, high);
}
}
public static void findk(int k, int[] L, int low, int high) {
int temp;
temp = partition(L, low, high);
if (temp == k - 1) {
System.out.println("第" + (temp + 1) + "大的数是:" + L[temp]);
} else if (temp > k - 1)
findk(k, L, low, temp - 1);
else
findk(k, L, temp + 1, high);
}
public static void main(String[] args) {
int[] a = { 15, 25, 9, 48, 36, 100, 58, 99, 126, 5 };
int i, k;
System.out.println("排序前:");
for (i = 0; i < 10; i++) {
System.out.print(a[i] + " ");
}
System.out.println();
k = 4;
N_element.findk(k, a, 0, 9);
N_element.quickSort(a, 0, 9);
System.out.println("排序后:");
for (i = 0; i < 10; i++) {
System.out.print(a[i] + " ");
}
}
}
执行结果
排序前:
15 25 9 48 36 100 58 99 126 5
第4大的数是:58
排序后:
126 100 99 58 48 36 25 15 9 5