我转载自:http://blog.csdn.net/rns521/article/details/7496622
在Origin中使用自定义函数进行非线性拟合
http://blog.163.com/wuhen211@126/blog/static/7474635020105233269949/
matlab拟合工具箱cftool
%拟合数据曲线;线性最小二乘法是解决曲线拟合的最常用的方法, %1、多项式拟合函数;p=polyfit(x,y,n);求p拟合函数在xi处的近似值pi=polyval(p,xi); %2、利用常用矩阵的除法解决复杂函数的拟合; %3、利用lsqcurvefit函数和lsqnonlin函数拟合; %4、利用cftool工具箱,自定义编写函数再通过M文件导出的形式
http://phylab.fudan.edu.cn/doku.php?id=howtos:matlab:mt1-5
http://hi.baidu.com/zzz700/blog/item/f313a3f5869659b5a40f52d7.html英文参考
一、 单一变量的曲线逼近 Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。 假设我们要拟合的函数形式是 y=A*x*x + B*x, 且 A>0,B>0 。 1 、在命令行输入数据: 》 x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475] ; 》 y=[5 10 15 20 25 30 35 40 45 50] ; 2 、启动曲线拟合工具箱 》 cftool 3 、进入曲线拟合工具箱界面 “Curve Fitting tool” ( 1 )点击 “Data” 按钮,弹出 “Data” 窗口; ( 2 )利用 X data 和 Y data 的下拉菜单读入数据 x,y ,可修改数据集名 “Data set name” ,然后点击 “Create data set” 按钮,退出 “Data” 窗口,返回工具箱界面,这时会自动画出数据集的曲线图; ( 3 )点击 “Fitting” 按钮,弹出 “Fitting” 窗口; ( 4 )点击 “New fit” 按钮,可修改拟合项目名称 “Fit name” ,通过 “Data set” 下拉菜单选择数据集,然后通过下拉菜单 “Type of fit” 选择拟合曲线的类型,工具箱提供的拟合类型有:
Custom Equations:用户自定义的函数类型 Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2) Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ Power:幂逼近,有2种类型,a*x^b 、a*x^b + c Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型 Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思) Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1) Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置: ——如果是非自定义的类型,根据实际需要点击 “Fit options” 按钮,设置拟合算法、修改待估计参数的上下限等参数; ——如果选 Custom Equations ,点击 “New” 按钮,弹出自定义函数等式窗口,有 “Linear Equations 线性等式 ” 和 “General Equations 构造等式 ” 两种标签。 在本例中选 Custom Equations ,点击 “New” 按钮,选择 “General Equations” 标签,输入函数类型 y=a*x*x + b*x ,设置参数 a 、 b 的上下限,然后点击 OK 。 ( 5 )类型设置完成后,点击 “Apply” 按钮,就可以在 Results 框中得到拟合结果,如下例: general model: f(x) = a*x*x+b*x Coefficients (with 95% confidence bounds): a = 0.009194 (0.009019, 0.00937) b = 1.78e-011 (fixed at bound) Goodness of fit: SSE: 6.146 R-square: 0.997 Adjusted R-square: 0.997 RMSE: 0.8263 同时,也会在工具箱窗口中显示拟合曲线。 这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在 “Fitting” 窗口点击 “New fit” 按钮,按照步骤( 4 ) ~ ( 5 )进行一次新的拟合 。 不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合 ,即待拟合的公式中,变量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好。下一篇文章我介绍帮同学做的一个非线性函数的曲线拟合。
上边对cftool工具箱做了很详尽的说明,但并没有对各种曲线拟合的性能做点评,在单变量曲线拟合中,如何选取一种最优化的拟合方式是非常重要的,我们在采用CFTOOL拟合后,会有一些性能说明,如: Goodness of fit: SSE: 6.146 R-square: 0.997 Adjusted R-square: 0.997 RMSE: 0.8263 官方的解释: Results -- Displays detailed results for the current fit including the fit type (model, spline, or interpolant), the fitted coefficients and 95% confidence bounds for parametric fits, and these goodness of fit statistics: SSE -- The sum of squares due to error. This statistic measures the deviation of the responses from the fitted values of the responses. A value closer to 0 indicates a better fit. R-square -- The coefficient of multiple determination. This statistic measures how successful the fit is in explaining the variation of the data. A value closer to 1 indicates a better fit. Adjusted R-square -- The degree of freedom adjusted R-square. A value closer to 1 indicates a better fit. It is generally the best indicator of the fit quality when you add additional coefficients to your model. RMSE -- The root mean squared error. A value closer to 0 indicates a better fit.
Matlab曲面拟合和插值 AAAAAAAAAAA风云博客
http://xiaoqiang851224.blog.163.com/blog/#m=0&t=1&c=fks_084066080086083064084085083095087086083071083086086064
http://suhao198706.blog.163.com/blog/static/62173403201121095512602/?fromdm&fromSearch&isFromSearchEngine=yes
Matlab曲线拟合
http://xiaoqiang851224.blog.163.com/blog/static/30247003201153083539419/?fromdm&fromSearch&isFromSearchEngine=yes
多项式拟合函数polyfit之C语言的源码
http://xiaoqiang851224.blog.163.com/blog/static/30247003201010251055758/
matlab二元函数拟合;
http://zhidao.baidu.com/question/141374449.html?fr=qrl&cid=93&index=2
matlab非线性拟合1(指数函数)
http://apps.hi.baidu.com/share/detail/43922314
--------------------------------------------------------------------------------------------