发挥得不是很好,很快写掉了三道题,但D和E没能调出来,发现自己的思路和答案还是有一定差异。
1110C - Meaningless Operations
f
(
a
)
=
m
a
x
g
c
d
(
a
⊕
b
,
a
a
n
d
b
)
f(a)=maxgcd(a⊕b,a_{and}b)
f(a)=maxgcd(a⊕b,aandb)就是给你一个a然后找一个0<b<a使得这个式子最大。
我发现了一个很有趣的性质然后就瞬间把它做出来了
考虑x的性质
- 如果a不是 2 x − 1 2^x-1 2x−1形式的数那么我们肯定可以配出b使得它的答案为 2 x − 1 2^x-1 2x−1
- 如果a是 2 x − 1 2^x-1 2x−1那么答案就是 m a x g c d ( a , b ) _{max}{gcd(a,b)} maxgcd(a,b)那么就是a的最大公约数
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <cstring>
#include <queue>
#include <cmath>
#include <map>
#include <set>
using namespace std;
#define REP(i, a, b) for(int i = a; i <= b; i++)
#define PER(i, a, b) for(int i = a; i >= b; i--)
#define LL long long
inline int read() {
int x = 0, flag = 1;char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') flag = - 1;
ch = getchar();
}
while(isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
return x * flag;
}
int n;
LL x, bit[30];
LL find(int j) {
LL res = 1;
for(LL k = 2; k * k < bit[j]; ++k) {
if((bit[j] - 1) % k == 0) return (bit[j] - 1) / k;
}
return res;
}
int main() {
n = read();
bit[0] = 1;
REP(i, 1, 26) bit[i] = bit[i - 1] * 2;
//cout << find(4) << endl;
REP(i, 1, n) {
LL y = 0;
scanf("%lld", &x);
REP(j, 1, 26) {
if(x + 1 <= bit[j]) {
if(x + 1 == bit[j]) cout << find(j) << endl;
else cout << bit[j] - 1 << endl;
break;
}
}
}
return 0;
}