[2019.2.7]Codeforces Global Round 1题解

发挥得不是很好,很快写掉了三道题,但D和E没能调出来,发现自己的思路和答案还是有一定差异。

1110C - Meaningless Operations

f ( a ) = m a x g c d ( a ⊕ b , a a n d b ) f(a)=maxgcd(a⊕b,a_{and}b) f(a)=maxgcd(ab,aandb)就是给你一个a然后找一个0<b<a使得这个式子最大。
我发现了一个很有趣的性质然后就瞬间把它做出来了
考虑x的性质

  • 如果a不是 2 x − 1 2^x-1 2x1形式的数那么我们肯定可以配出b使得它的答案为 2 x − 1 2^x-1 2x1
  • 如果a是 2 x − 1 2^x-1 2x1那么答案就是 m a x g c d ( a , b ) _{max}{gcd(a,b)} maxgcd(a,b)那么就是a的最大公约数
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <cstring>
#include <queue>
#include <cmath>
#include <map>
#include <set>
using namespace std;
#define REP(i, a, b) for(int i = a; i <= b; i++)
#define PER(i, a, b) for(int i = a; i >= b; i--)
#define LL long long
inline int read() {
    int x = 0, flag = 1;char ch = getchar();
    while(!isdigit(ch)) {
        if(ch == '-') flag = - 1;
        ch = getchar();
    }
    while(isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
    return x * flag;
}

int n;
LL x, bit[30];

LL find(int j) {
    LL res = 1;
    for(LL k = 2; k * k < bit[j]; ++k) {
        if((bit[j] - 1) % k == 0) return (bit[j] - 1) / k;
    }
    return  res;
}

int main() {   
    n = read();
    bit[0] = 1;
    REP(i, 1, 26) bit[i] = bit[i - 1] * 2;
    //cout << find(4) << endl;
    REP(i, 1, n) {
        LL y = 0;
        scanf("%lld", &x);
        REP(j, 1, 26) {
            if(x + 1 <= bit[j]) {
                if(x + 1 == bit[j]) cout << find(j) << endl;
                else cout << bit[j] - 1 << endl;
                break;
            }
        }
    }
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值