Description
现在我们在一个平面上画了n个矩形。每一个矩形的两边都与坐标轴相平行,且矩形定点的坐标均为整数。现我们定义满足如下性质的图形为一个块:
每一个矩形都是一个块;
如果两个块有一段公共的部分,那么这两个块就会形成一个新的块,否则这两个块就是不同的。
示例:
图1中的矩形形成了两个不同的块。
图2中的矩形形成了一个块。
任务:
请写一个程序:
从文本文件PRO.IN中读入各个矩形的顶点坐标;
找出这些矩形中不同的块的数目;
把结果输出到文本文件PRO.OUT中。
Input
在输入文件PRO.IN的第一行又一个整数n,1 <= n <=7000,表示矩形的个数。接下来的n行描述矩形的顶点,每个矩形用四个数来描述:左下顶点坐标(x,y)与右上顶点坐标(x,y)。每个矩形的坐标都是不超过10000的非负整数。
Output
输出唯一的一个整数——这些矩形所形成的不同的块的数目。
Sample Input
9
0 3 2 6
4 5 5 7
4 2 6 4
2 0 3 2
5 3 6 4
3 2 5 3
1 4 4 7
0 0 1 4
0 0 4 1
Sample Output
2
Data Constraint
数据规模
对于60%的数据,有N<=80
对于100%的数据如题目。
//written by zzy
题目大意:
给你n个矩形,若两个有相交部分则是同一个块,求有多少个不同的块。
题解:
不难想到是并查集,两两比对矩形,若相交则合并即可,
注意如何判断相交,由于相交的情况有很多,可以判断不相交的情况。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 7005
using namespace std;
int i,j,n,ans;
int x1[N],x2[N],y1[N],y2[N],fa[N];
bool b[N];
int get(