均分纸牌

题目描述

有 NN 堆纸牌,编号分别为 1,2,…,N1,2,…,N 。每堆上有若干张,但纸牌总数必为 NN 的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为 11 堆上取的纸牌,只能移到编号为 22 的堆上;在编号为 NN 的堆上取的纸牌,只能移到编号为 N-1N−1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N=4N=4 , 44 堆纸牌数分别为:

① 99 ② 88 ③ 1717 ④ 66

移动 33 次可达到目的:

从 ③ 取 44 张牌放到 ④ ( 9,8,13,109,8,13,10 )-> 从 ③ 取 33 张牌放到 ②( 9,11,10,109,11,10,10 )-> 从 ② 取 11 张牌放到①( 10,10,10,1010,10,10,10 )。

输入输出格式

输入格式:

 

两行

第一行为: NN ( NN 堆纸牌, 1 \le N \le 1001≤N≤100 )

第二行为: A_1,A_2, … ,A_nA1​,A2​,…,An​ ( NN 堆纸牌,每堆纸牌初始数, l \le A_i \le 10000l≤Ai​≤10000 )

 

输出格式:

 

一行:即所有堆均达到相等时的最少移动次数。

 

输入输出样例

输入样例#1: 

4
9 8 17 6

输出样例#1:

3

代码:

#include<bits/stdc++.h>
using namespace std;
int a[11000];
int main()
{
    int n,pj,step=0;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
        pj=pj+a[i];
    }
    pj=pj/n;
    for(int i=1;i<=n;i++)
    a[i]=a[i]-pj;
    int i=1,j=n;
    while(a[i]==0&&i<n) i++;
    while(a[j]==0&&j>1) j--;
    while(i<j)
    {
        a[i+1]=a[i+1]+a[i];
        a[i]=0;
        step++;
        i++;
        while(a[i]==0&&i<j) i++;
    }
    cout<<step;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值