06-6.4.4 拓扑排序

👋 Hi, I’m @Beast Cheng
👀 I’m interested in photography, hiking, landscape…
🌱 I’m currently learning python, javascript, kotlin…
📫 How to reach me --> 458290771@qq.com


喜欢《数据结构》部分笔记的小伙伴可以订阅专栏,今后还会不断更新。🧑‍💻
感兴趣的小伙伴可以点一下订阅、收藏、关注!🚀
谢谢大家!🙏

AOV网

AOV网(Activity On Vertex Network,用顶点表示活动的网)
用DAG图(有向无环图)表示 一个工程。顶点表示活动,有向边 < V i , V j > <V_i,V_j> <Vi,Vj> 表示活动 V i V_i Vi 必须先于活动 V j V_j Vj 进行

拓扑排序

![[Pasted image 20240704202324.png]]
拓扑排序:找到做事的先后顺序

  1. 先准备厨具
  2. 然后买菜
  3. 选择先洗蕃茄(打鸡蛋)
  4. 切番茄
  5. 打鸡蛋
  6. 下锅炒

拓扑排序的实现:

  1. 从AOV网中选择一个没有前驱(入度为0)的顶点并输出
  2. 从网中删除该顶点和所有以它为起点的有向边
  3. 重复第一步和第二步,知道当前的 AOV网为空或当前网中不存在无前驱的顶点为止

对有回路的图进行拓扑排序

当前所有顶点入度 > 0,说明原图存在回路,所以不存在拓扑排序序列

拓扑排序的代码实现

#define MaxVertexNum 100  // 图中顶点数目的最大值
typedef struct ArcNode{  // 边表结点
	int adjvex;  // 该弧所指向的顶点的位置
	struct ArcNode *nextarc;  // 指向下一条弧的指针
	// InfoType info;  // 网的边权值
} ArcNode;

typedef struct VNode{  // 顶点表结点
	VertexType data;  // 顶点信息
	ArcNode *firstarc;  // 指向第一条依附于该顶点的弧的指针
} VNode, AdjList[MaxVertexNum];

typedef struct{
	AdjList vertices;  // 邻接表
	int vexnum, arcnum;  // 图的顶点数和弧数
} Graph;  // Graph是以邻接表存储的图类型

bool TopologicalSort(Graph G){
	InitStack(S);  // 初始化栈,存储入度为0的顶点
	for(int i = 0; i < G.vexnum; i ++){
		if(indegree[i] == 0){
			Push(S, i);  // 将所有入度为0的顶点进栈
		}
	}
	int count = 0;  // 计数,记录当前已经输出的顶点数
	while(!isEmpty(S)){  // 栈不空,则存在入度为0的顶点
		Pop(S, i);  // 栈顶元素出栈
		print[count ++] = i;  // 输出顶点i
		for(p = G.vertices[i].firstarc; p = p->nextarc){
			// 将所有i指向的顶点的入度减一,并且将入读减为零的顶点压入栈S
			v = p->adjvex;
			if(!(--indegree[v])){
				Push(S, v);  // 入度为0,则入栈
			}
		}
	}  // while
	if(count < G.vexnum){
		return false;  // 拓扑排序失败,有向图中有回路
	}
	else{
		return true;  // 拓扑排序成功
	}
}

时间复杂度: O ( ∣ V ∣ + ∣ E ∣ ) O(|V|+|E|) O(V+E)
若采用邻接矩阵,则需要 O ( ∣ V ∣ 2 ) O(|V|^2) O(V2)

逆拓扑排序

对于一个AOV网,如果采用一下步骤进行排序,则称之为 逆拓扑排序

  1. 从AOV网中选择一个没有后继(出度为0)的顶点并输出
  2. 从网中删除该顶点和所有以它为终点的有向边
  3. 重复①和②直到当前的AOV网为空

逆拓扑排序的实现(DFS算法)

void DFSTraverse(Graph G){
	for(v=0; v<G.vexnum; ++v)
		visited[v] = FALSE;
	for(v=-; v<G.vexnum; ++v)
		if(!visited[v])
			DFS(G, v);
}

void DFS(Graph G, int v){
	visited[v] = TRUE;
	for(w = FirstNeighbor(G, v); w >= 0; w = NextNeighbor(G, v, w)){
		if(!visited[w]){
			DFS(G, w);
		}
	}
	printf(v);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Beast Cheng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值