字节搜索算法暑期实习一面

本次博客主要涉及人工智能领域的算法面试,包括自我介绍、项目经验分享、LeetCode算法题解析(连续子数组的最大和)、随机抽样方法、预训练模型的应用,以及BERT模型中的Normalization技术和Dense层的作用。博客深入讨论了在实际项目中如何运用这些概念和技术。
摘要由CSDN通过智能技术生成

1、自我介绍
2、项目介绍
3、算法题: https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de-zui-da-he-lcof/
4、如何从n个样本中随机抽样m个
5、项目中用到了什么预训练模型
6、bert中用到了什么normalization方法,在哪里用到的
7、add & norm,先norm再add可以吗
8、bert最后的dense层有什么作用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值