LLM-in-the-loop:数据集构建

LLM-in-the-loop:数据集构建

(1)采用人工标注少部分数据; (2)微调或提示训练一个大模型,使其指标基本达到与人工标注数据近似; (3)再次人工标注少部分数据; (4)再次微调或设计Prompt使大模型逼近人工标注。

在LLM-in-the-loop数据集构建过程中,主要目的是通过少量的人工标注数据引导和微调大语言模型(LLM),使其逐步逼近人工标注的效果。具体步骤如下:

(1)采用人工标注少部分数据

首先,选取少量的原始数据进行人工标注。由于人工标注成本高,因此选择少量数据进行标注,这些数据将作为模型微调的基础。

操作步骤:

  • 收集原始数据。
  • 选择少部分样本进行人工标注。
  • 构建训练数据集(如:data_labeled_1.csv),格式可以是 输入-输出 对。

Python 代码示例:

import pandas as pd

# 模拟人工标注的数据
data = {'input_text': ['输入1', '输入2', '输入3'],
        'label': ['标签1', '标签2', '标签3']}
# 保存人工标注的数据
df = pd.DataFrame(data)
df.to_csv('data_labeled_1.csv', index=False)

(2)微调或提示训练一个大模型,使其指标基本达到与人工标注数据近似

使用标注的数据对大语言模型进行微调,或设计Prompt对模型进行引导,以便使其性能接近人工标注数据的效果。模型可以是像BERT、GPT等大模型。

操作步骤:

  • 使用标注的数据对模型进行微调,或设计Prompt进行训练。
  • 评估模型在标注数据上的效果,使其与人工标注的数据表现接近。

Python 代码示例:

from transformers import GPT2Tokenizer, GPT2ForSequenceClassification, Trainer, TrainingArguments

# 加载模型和Tokenizer
model = GPT2ForSequenceClassification.from_pretrained('gpt2', num_labels=3)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# 假设我们有训练数据
train_texts = ['输入1', '输入2', '输入3']
train_labels = [0, 1, 2]  # 对应标签

# 将文本编码为模型可接受的输入
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=128)

# 自定义数据集类
import torch
class CustomDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.labels)

# 创建数据集
train_dataset = CustomDataset(train_encodings, train_labels)

# 微调模型
training_args = TrainingArguments(
    output_dir='./results',          
    num_train_epochs=3,              
    per_device_train_batch_size=4,  
    logging_dir='./logs',            
    logging_steps=10,
)

trainer = Trainer(
    model=model,                         
    args=training_args,                  
    train_dataset=train_dataset,         
)

trainer.train()

(3)再次人工标注少部分数据

在模型初步调优之后,我们可以再次标注一小部分新数据,进一步提升模型的准确性。这些新标注的数据将用于下一次微调。

操作步骤:

  • 从未标注数据集中选择少量样本进行人工标注。
  • 构建新一轮的训练数据集(如:data_labeled_2.csv)。

Python 代码示例:

# 模拟第二轮人工标注的数据
new_data = {'input_text': ['输入4', '输入5', '输入6'],
            'label': ['标签1', '标签2', '标签1']}
# 保存新一轮的标注数据
new_df = pd.DataFrame(new_data)
new_df.to_csv('data_labeled_2.csv', index=False)

(4)再次微调或设计Prompt使大模型逼近人工标注

使用第二轮标注的数据对模型进行再次微调,或者调整Prompt的设计,使得模型能够进一步逼近人工标注效果。通过多次循环,逐渐提高模型的准确性。

操作步骤:

  • 将新标注的数据与之前的数据合并,形成一个更大的数据集。
  • 使用新的数据进行微调,评估模型效果,或者通过提示词优化Prompt。

Python 代码示例:

# 读取第一次和第二次标注的数据
df1 = pd.read_csv('data_labeled_1.csv')
df2 = pd.read_csv('data_labeled_2.csv')

# 合并数据集
combined_df = pd.concat([df1, df2])

# 将新的数据集用于再次微调模型
new_train_texts = combined_df['input_text'].tolist()
new_train_labels = [0, 1, 0, 1, 2, 1]  # 假设对应的标签已编码

new_train_encodings = tokenizer(new_train_texts, truncation=True, padding=True, max_length=128)
new_train_dataset = CustomDataset(new_train_encodings, new_train_labels)

# 再次微调模型
trainer.train(new_train_dataset)

总结:

通过上述过程,能够在LLM-in-the-loop数据构建过程中,逐步利用人工标注数据引导模型,通过不断的标注与微调循环,使模型逼近人工标注效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值