基于MATLAB的离焦模糊图像复原
摘 要 图像在获取、传输和存储过程中会受到如模糊、失真、噪声等原因的影响,这些原因会使图像的质量下降。因此,我们需要采取一定的方法尽可能地减少或消除图像质量的下降,恢复图像的本来面目,这称为图像复原。通过阅读图像复原技术相关资料,本文主要探讨了维纳(Wiener)滤波、约束最小二乘滤波算法、Lucy-Richardson算法和盲解卷积算法,并使用相关的工具箱函数deconvwnr函数、deconvreg函数、deconvlucy函数、deconvblind函数进行仿真。另外本文对上述算法进行了仿真实现,并分析了四种算法的实验结果。
关键词 图像复原;维纳滤波恢复;约束最小二乘滤波恢复;Lucy-Richardson恢复;盲解卷积恢复
目录
前 言
在实际的日常生活中,人们要接触很多图像,画面。而在景物成像这个过程里可能会出现模糊、失真或混入噪声,最终导致图像质量下降,这种现象称为图像“退化”。因此我们可以采取一些技术手段来尽量减少甚至消除图像质量的下降,还原图像的本来面目,即在预定义的意义上改善给定的图像,这就是图像复原。尽管图像增强和图像复原之间有重叠部分,但前者主要是主观处理,而图像复原大部分是客观处理。复原通过使用退化现象的先验知识试图重建或恢复一副退化的图像。因此,复原技术趋向于将退化模型化并用相反的处理来恢复原图像,即考虑用模糊函数来消除图像的模糊。引起图像模糊有多种多样的原因,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等。
本文主要研究离焦模糊图像的复原,离焦模糊图像是指在拍摄时景物与相机的相对运动引起的离焦 ,或是成像区域内不同深度的对象所引起不同程度的离焦 ,还有由于在成像区域中存在不同深度的对象会使自动调焦系统引起混淆而导致拍摄的相片离焦等。因此本文研究使用MATLAB把退化现象模型化,并对几种常用的滤波方法用MATLAB进行了仿真实现,为人们在不同的应用场合及不同的图像数据条件下选择不同的复原算法提供了一定的依据.
1 图像退化/复原处理的模型
如图1所示,
退化 复原
图1
本文中用退化函数把退化过程模型化,它和加性噪声项一起,作用于输入图像
,产生一副退化的图像
:
(1.1)
给定
、一些关于退化函数H的知识以及一些关于加性噪声
的知识,复原的目标就是得到原图像的一个估计。我们要是这个估计尽可能地接近原始的输入图像。通常,我们对
和
知道越多,
就越接近
。
若H是线性的、空间不变的过程,则退化图像在空间域通过下式给出:
(1.2)
其中,
是退化函数的空间表示,且空间域的卷积和频域的乘法组成了一个傅立叶变换对,所以可以用等价的频域表示写出恰面的模型:
(1.3)
其中,用大写字母表示的项是卷积方程式中相应项的傅立叶变换。退化函数
<